Calcified Tissue International

, Volume 35, Issue 1, pp 195–201 | Cite as

Reversal of decreased phosphorylation of sarcoplasmic reticulum calcium transport ATPase by 1,25-dihydroxycholecalciferol in experimental uremia

  • Ricardo Boland
  • Clifford Matthews
  • Ana R. de Boland
  • Eberhard Ritz
  • Wilhelm Hasselbach
Laboratory Investigations


When compared to that from shamoperated controls, sarcoplasmic reticulum isolated from skeletal muscle of uremic rabbits had a lower rate of calcium uptake and storing capacity. In vivo administration of 1,25-dihydroxycholecalciferol [1,25(OH)2D3] restored the values in uremic animals toward normal. To obtain information about the mechanisms responsible for these differences, phosphorylation of the calcium transport ATPase was studied. The steady-state levels of phosphoprotein in uremic membranes were lower and returned to normal when the secosteroid was administered. Electrophoresis of the membranes phosphorylated with32P-inosine triphosphate (32P-ITP) showed that the differences were related to a 100,000 dalton protein. The rate of phosphoprotein formation, determined with32P-ITP and at 0°C, was considerably lower in uremic than in control animals. Pretreatment with 1,25(OH)2D3 prevented this change. The hypothesis is advanced that the vitamin D metabolite affects the steady-state concentration and rate constant of formation of active sites in the Ca-ATPase. These results may partly explain the altered Ca transport function of the sarcoplasmic reticulum in experimental uremia.

Key words

1,25-Dihydroxycholecalciferol Uremia Muscle phosphorylation Sarcoplasmic reticulum ATPase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Floyd M, Ayyar DR, Barwick DD, Hudgson P, Weightman D (1974) Myopathy in chronic renal failure. Q J Med 43:509–523PubMedGoogle Scholar
  2. 2.
    Ritz E, Boland R, Kreusser W (1980) Effects of vitamin D and parathyroid hormone on muscle. Potential role in uremic myopathy. Am J Clin Nutr 33:1522–1529PubMedGoogle Scholar
  3. 3.
    Henderson RG, Russell RGG, Ledigham JGG, Smith R, Oliver DC, Walton RJ, Small DG, Preston C, Warner GT, Norman AW (1974) Effects of 1,25-dihydroxycholecalciferol on calcium absorption, muscle weakness and bone disease in chronic renal failure. Lancet 1:379–380CrossRefPubMedGoogle Scholar
  4. 4.
    Marsden CD, Reynolds EH, Parsons V, Harris R, Duchen L (1973) Myopathy associated with anticonvulsant osteomalacia. Br Med J 4:526–527PubMedCrossRefGoogle Scholar
  5. 5.
    Smith R, Stern G (1967) Myopathy, osteomalacia and hyperparathyroidism. Brain 90:593–602PubMedGoogle Scholar
  6. 6.
    Holmes AM, Enoch BA, Taylor JL, Jones ME (1973) Occult rickets and osteomalacia amongst the Asian immigrant population. Q J Med 42:125–149Google Scholar
  7. 7.
    Dent CE, Smith R (1969) Nutritional osteomalacia. Q J Med 38:195–209PubMedGoogle Scholar
  8. 8.
    Stanbury SW (1965) Muscular disorders of metabolic bone disease. Manch Med Gaz 45:16–19PubMedGoogle Scholar
  9. 9.
    Hasselbach W (1964) Relaxing factor and the relaxation of muscle. Prog Biophys Mol Chem 14:169–222Google Scholar
  10. 10.
    Weber A, Herz R (1961) Requirement for calcium in the syneresis of myofibril. Biochem Biophys Res Commun 6:364–368CrossRefPubMedGoogle Scholar
  11. 11.
    Weber A, Herz R (1963) The binding of calcium to actomyosin systems in relation to their biological activity. J Biol Chem 238:599–605PubMedGoogle Scholar
  12. 12.
    Curry CB, Baston JF, Francis MJO, Smith R (1974) Calcium uptake by sarcoplasmic reticulum of muscle from vitamin D deficient rabbits. Nature 249:83–84CrossRefPubMedGoogle Scholar
  13. 13.
    Pointon JJ, Francis MJO, Smith R (1979) Effect of vitamin D deficiency on sarcoplasmic reticulum function and troponim C concentration of rabbit skeletal muscle. Clin Sci 57:257–263PubMedGoogle Scholar
  14. 14.
    Pleasure D, Wyszynski R, Sumner A, Schotland D, Feldmann B, Nugent N, Hitz K (1979) Skeletal muscle calcium metabolism and contractile force in vitamin D-deficient chicks. J Clin Invest 64:1157–1167PubMedGoogle Scholar
  15. 15.
    Heimberg KW, Matthews C, Ritz E, Augustin J, Hasselbach W (1976) Active Ca transport of sarcoplasmic reticulum during experimental uremia: changes in kinetics and lipid composition. Eur J Biochem 61:207–213CrossRefPubMedGoogle Scholar
  16. 16.
    Penpargkul S, Bhan A, Scheuer J (1976) Studies of subcellular control factors in hearts of uremic rats. J Lab Clin Med 88:563–570PubMedGoogle Scholar
  17. 17.
    Matthews C, Heimberg KW, Ritz E, Agostini B, Fritzsche J, Hasselbach W (1977) Effect of 1,25-dihydroxycholecalciferol on impaired calcium transport by the sarcoplasmic reticulum in experimental uremia. Kidney Int 11:227–235PubMedGoogle Scholar
  18. 18.
    Spencer R, Charman M, Wilson P, Lawson E (1976) Vitamin D stimulated intestinal absorption may not involve calcium binding protein directly. Nature 263:161–163CrossRefPubMedGoogle Scholar
  19. 19.
    Zolock DT, Morrissey R., Bikle DD (1977) In: Norman AW et al. (eds) Vitamin D: Biochemical, chemical and clinical aspects related to calcium metabolism. Walter de Gruyter, New York, pp 345–347Google Scholar
  20. 20.
    Zolock DT, Morrisey RL, Bikle DD (1979) Meaning of nonparallel 1,25-dihydroxycholecalciferol mediated response relationship in intestine and bone to dose and time. In: Norman AW et al. (eds) Vitamin D—Basic research and its clinical application. Walter de Gruyter, New York, pp 639–642Google Scholar
  21. 21.
    Makinose M (1969) The phosphorylation potential of the membranal proteins of the sarcoplasmic vesicles during active calcium transport. Eur J Biochem 10:74–82PubMedCrossRefGoogle Scholar
  22. 22.
    Martonosi A (1979) Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport. J Biol Chem 244:613–620Google Scholar
  23. 23.
    Inesi G, Maring E, Murphy AJ, McFarland BH (1970) A study of the phosphorylated intermediate of sarcoplasmic reticulum ATPase. Arch Biochem Biophys 138:285–294CrossRefPubMedGoogle Scholar
  24. 24.
    Kanazawa T, Yamada S, Tamnoto T, Tonomura Y (1971) Reaction mechanism of the Ca2+ dependent ATPase of sarcoplasmic reticulum from skeletal muscle. V. Vectorial requirements for calcium and magnesium ions of three partial reactions of ATPase: Formation and decomposition of a phosphorylated intermediate and ATP formation from ADP and the intermediate. J Biochem (Tokyo) 70:95–123Google Scholar
  25. 25.
    Meissner G (1973) ATP and Ca2+ binding by the Ca2+ pump protein of the sarcoplasmic reticulum. Biochem Biophys Acta 298:906–926PubMedGoogle Scholar
  26. 26.
    De Meis L, Hasselbach W (1971) Acetyl phosphate as substrate for Ca2+ uptake in skeletal microsomes. J Biol Chem 246:4759–4763PubMedGoogle Scholar
  27. 27.
    Stewart P, MacLennan DH (1976) Isolation and characterisation of tryptic fragments of the adenosine triphosphatase of sarcoplasmic reticulum. J Biol Chem 251:712–719PubMedGoogle Scholar
  28. 28.
    Rockstein M, Herron PW (1951) Colorimetric determination of inorganic phosphorous in microgram quantities. Anal Chem 23:1500–1501CrossRefGoogle Scholar
  29. 29.
    Song CS, Bodansky O (1967) Subcellular localisation and properties of 5′nucleotidase in the rat liver. J Biol Chem 242:694–699PubMedGoogle Scholar
  30. 30.
    Schimmel SD, Kent C, Bischoff R, Vagelos RR (1973) Plasma membranes from cultured muscle cells: Isolation procedure and separation of putative plasma-membrane marker enzymes (Na+, K+-ATPase/5′nucleotidase/alpha bungarotoxin). Proc Natl Acad Sci USA 70:3195–3199PubMedGoogle Scholar
  31. 31.
    Katz AM, Repke DI, Upschaw JE, Polascik MA (1970) Characterisation of dog microsomes: use of zonal centrifugation to fractionate fragmented sarcoplasmic reticulum, Na+, K+ activated ATPase and mitochondrial fragments. Biochem Biophys Acta 205:473–490CrossRefPubMedGoogle Scholar
  32. 32.
    Appelmans F, Wattiaux R, De Duve D (1955) Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J 59:438–445PubMedGoogle Scholar
  33. 33.
    Van Hoof F, Hers HG (1968) The abnormalities of lysosomal enzymes in mucopolysaccharidoses. Eur J Biochem 7:34–44CrossRefPubMedGoogle Scholar
  34. 35.
    Sarzala MG, Pilarska M, Zubrzychka E, Michalak M (1975) Changes in the structure, composition and function of sarcoplasmic reticulum membrane during development. Eur J Biochem 57:25–34, 1975CrossRefPubMedGoogle Scholar
  35. 35.
    Sarzala MG, Michalak M (1978) Studies on the heterogeneity of sarcoplasmic reticulum vesicles. Biochim Biophys Acta 513:221–235PubMedGoogle Scholar
  36. 36.
    Schapira G, Dobocz I, Piau JP, Delain E (1974) An improved technique for preparation of skeletal muscle cell plasma membrane. Biochem Biophys Acta 345:348–358Google Scholar
  37. 37.
    Kidwai AM, Radcliffe MA, Lee EY, Daniel EE (1973) Isolation and properties of skeletal muscle plasma membrane. Biochim Biophys Acta 298:593–607PubMedGoogle Scholar
  38. 38.
    Martonosi A (1968) Sarcoplasmic reticulum. IV. Solubilisation of microsomal adenosine triphosphatase. J Biol Chem 243:71–81PubMedGoogle Scholar
  39. 39.
    MacLennan DH (1970) Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem 245:4508–4518PubMedGoogle Scholar
  40. 40.
    Meissner G, Fleischer S (1971) Characterisation of sarcoplasmic reticulum from skeletal muscle. Biochem Biophys Acta 241:356–378PubMedGoogle Scholar
  41. 41.
    Holland PC, MacLennan DH (1976) Assembly of the sarcoplasmic reticulum: Biosynthesis of the adenosine triphosphatase in the rat skeletal muscle culture. J Biol Chem 251:2030–2036PubMedGoogle Scholar
  42. 42.
    Zubrzycka E, MacLennan DH (1976) Assembly of the sarcoplasmic reticulum: Biosynthesis of calsequestrin in rat skeletal muscle cultures. J Biol Chem 251:7733–7738PubMedGoogle Scholar
  43. 43.
    Ikemoto N (1974) The calcium binding sites involved in the regulation of the purified adenosine triphosphatase of the sarcoplasmic reticulum. J Biol Chem 249:649–651PubMedGoogle Scholar
  44. 44.
    Ikemoto N (1975) Transport and inhibitory Ca2+ binding sites on the ATPase enzyme isolated from the sarcoplasmic reticulum. J Biol Chem 250:7219–7224PubMedGoogle Scholar
  45. 45.
    Ikemoto N (1976) Behaviour of the Ca2+ transport sites linked with the phosphorylation reaction of the ATPase purified from the sarcoplasmic reticulum. J Biol Chem 251:7275–7277PubMedGoogle Scholar
  46. 46.
    Norman AW, Wecksler WR (1978) Receptors and hormone action. In: O'Malley BW, Birnbaumer L (eds) Vol II. Academic Press, New York, pp 533–571Google Scholar
  47. 47.
    Zerwekh JE, Lindell TJ, Hayssler MR (1976) Increased intestinal chromatin template activity: Influence of 1,25-dihydorxyvitamin D3 and hormone receptor complexes. J Biol Chem 251:2388–2394PubMedGoogle Scholar
  48. 48.
    Bikle DD, Zolock DT, Morrisey RL, Herman RH (1978) Independence of 1,25-dihydroxyvitamin D3 mediated calcium transport from de novo RNA and protein synthesis. J Biol Chem 253:484–488PubMedGoogle Scholar
  49. 49.
    Wasserman RH, Brindak ME (1979) The effect of cholecalciferol on the phosphorylation of intestinal membrane proteins. In: Norman AW et al (eds) Vitamin D—Basic research and its clinical application. De Gruyter, Berlin, pp 703–710Google Scholar
  50. 50.
    Birge SJ, Haddad JC (1975) 25-Hydroxycholecalciferol stimulation of muscle metabolism. J Clin Invest 56:1100–1107PubMedCrossRefGoogle Scholar
  51. 51.
    Peacock M, Heyburn PJ (1977) Effect of vitamin D metabolites on proximal muscle weakness (abstract). Calcif Tissue Res 24:R20Google Scholar
  52. 52.
    Sjöström M, Lorentzen R, Larson SE, Holmund D (1978) The influence of 1,25-dihydroxycholecalciferol on the ultrastructural organisation of skeletal muscle fibers—morphometric analysis. Med Biol 56:209–215PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1983

Authors and Affiliations

  • Ricardo Boland
    • 1
  • Clifford Matthews
    • 1
  • Ana R. de Boland
    • 1
  • Eberhard Ritz
    • 1
  • Wilhelm Hasselbach
    • 1
  1. 1.Abteilung PhysiologieMax-Planck-Institut für Medizinische ForschungHeidelbergFederal Republic of Germany

Personalised recommendations