Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations

Abstract

Published information, both theoretical and experimental, on As chemical behavior in soils is reviewed. Because of many emission sources, As is ubiquitous. Thermodynamic calculations revealed that As(V) species (HAsO 2-4 >H2AsO -4 at pH 7) are more abundant in soil solutions that are oxidized more than pe+pH>9. Arsenic is expected to be in As(III) form (HAsO 02 =H3AsO 03 >AsO -2 =H2AsO -3 at pH 7) in relatively anoxic soil solutions with pe+pH<7.

Adsorption on soil colloids is an important As scavenging mechanism. The adsorption capacity and behavior of these colloids (clay, oxides or hydroxides surfaces of Al, Fe and Mn, calcium carbonates, and/or organic matter) are dependent on ever-changing factors, such as hydration, soil pH, specific adsorption, changes in cation coordination, isomorphous replacement, crystallinity, etc. Because of the altering tendencies of soil colloids properties, adsorption of As has become a complex, empirical, ambiguous, and often a self contradicting process in soils. In general, Fe oxides/hydroxides are the most commonly involved in the adsorption of As in both acidic and alkaline soils. The surfaces of Al oxides/hydroxides and clay may play a role in As adsorption, but only in acidic soils. The carbonate minerals are expected to adsorb As in calcareous soils. The role of Mn oxides and biogenic particles in the As adsorption in soils appears to be limited to acidic soils. Kinetically, As adsorption may reach over 90% completion in terms of hours.

Precipitation of a solid phase is another mechanism of As removal from soil solutions. Thermodynamic calculations showed that in the acidic oxic and suboxic soils, Fe-arsenate (Fe3(AsO4)4)2) may control As solubility, whereas in the anoxic soils, sulfides of As(III) may control the concentrations of the dissolved As in soil solutions. In alkaline acidic oxic and suboxic soils, precipitation of both Fe- and Ca-arsenate may limit As concentrations in soil solutions.

Field observations suggest that direct precipitation of discrete As solid phases may not occur, except in contaminated soils. Chemisorption of As oxyanions on soil colloid surfaces, especially those of Fe oxide/hydroxides and carbonates, is believed to a common mechanisms for As solid phase formation in soils. It is suggested that As oxyanions gradually concentrate on colloid surfaces to a level high enough to precipitate a discrete or mixed As solid phase.

Arsenic volatilization is another As scavenging mechanism operating in soils. Many soil organisms are capable of converting arsenate and arsenite to several reduced forms, largely methylated arsines which are volatile. These organisms may generate different or similar biochemical products. Methylation and volatilization of As can be affected by several biotic (such as type of organisms, ability of organism for methylation, etc.) and abiotic factors (soil pH, temperature, redox conditions, methyl donor, presence of other ions, etc.) factors. Information on the rate of As biotransformations in soils is limited. In comparison to the biologically assisted volatilization, the chemical volatilization of As in soils is negligible.

This is a preview of subscription content, access via your institution.

References

  1. Anderson, M. A., Ferguson, J. F. and Gavis, J.: 1976,J. Colloid. Interface Sci. 54, 391–399.

    Article  CAS  Google Scholar 

  2. Anderson, M. A. and Malotky, D. T.: 1979,J. Colloid. Interface Sci. 72, 413.

    CAS  Google Scholar 

  3. Boyle, R. W. and Jonasson, I. R.: 1973,J. Geochem. Explor. 2, 251.

    Article  CAS  Google Scholar 

  4. Braman, R. S.: 1978,Molecular Forms of Arsenic in the Environment, Proc. Workshop on Toxicity to Biota of Metal Forms in Natural Waters. Great Lakes Regional Office, Windsor, Ontario, pp. 249–261.

    Google Scholar 

  5. Brannon, J. M. and Patrick, W. H.: 1987,Environ. Sci. Technol. 21, 450.

    Article  CAS  Google Scholar 

  6. Challenger, F.: 1945,Chem. Rev. 36, 315.

    Article  CAS  Google Scholar 

  7. Chilvers, D. C. and Peterson, P. J.: 1987, ‘Global Cycling of Arsenic’, in Hutchinson, T. C. and Meema, K. M. (eds.),Lead, Mercury, Cadmium, and Arsenic in the Environment: Scope 31, John Wiley & Sons, New York, pp. 279–301.

    Google Scholar 

  8. Cox, D. P.: 1975, ‘Microbiological Methylation of Arsenic’, in Woolson, E. A. (ed.),Arsenical Pesticides, ACS Symp. Ser. 7, pp.

  9. Cox, D. P. and Alexander, M.: 1973,Bull. Environ. Contam. Toxicol. 9, 84.

    Article  CAS  Google Scholar 

  10. Da Costa, E. W. B.: 1972,Appl. Microbiol. 24, 424.

    Google Scholar 

  11. Deuel, L. E. and Swoboda, A. R.: 1972,Soil Sci. Soc. Am. Proc. 36, 276.

    CAS  Article  Google Scholar 

  12. Dickens, R. and Hiltbold, A. E.: 1967,Weeds 15, 299.

    CAS  Google Scholar 

  13. ElBassam, N., Keeppel, H. and Tietjen, C.: 1975, ‘Arsenic Transfer in Soils’,Abstr. ESNA Environ. Pollut., p. 1.

  14. ElKhatib, E. A., Bennett, O. L. and Wright, Z.: 1984a,Soil Sci. Soc. Am. J. 48, 758.

    CAS  Article  Google Scholar 

  15. ElKhatib, E. A., Bennett, O. L. and Wright, Z.: 1984b,Soil Sci. Soc. Am. J. 48, 1025.

    CAS  Article  Google Scholar 

  16. Epp, E. A. and Sturgis, M. B.: 1939,Soil Sci. Soc. Am. Proc. 4, 215.

    Google Scholar 

  17. Fiskell, J. G. A., Mansell, R. S., Selim, H. M. and Martin, F. G.: 1979,J. Environ. Qual. 8, 579.

    CAS  Article  Google Scholar 

  18. Fleischer, M.: 1973, Cycling and control of metals. Poceeding of an Environmental Resources Conference. National Environmental Research Center, Cincinnati.

    Google Scholar 

  19. Frost, R. R. and Griffin, R. A.: 1977,Soil Sci. Soc. Am. J. 41, 53.

    CAS  Article  Google Scholar 

  20. Fruchter, J. S., Rai, D. and Zachara, J. M.: 1990,Environ. Sci. Technol. 24, 1173.

    Article  CAS  Google Scholar 

  21. Fuller, C. C., Davis, J. A., Wachunas, G. A. and Rea, B. A.: 1993,Geochim. Cosmochim. Acta 57, 2271.

    Article  CAS  Google Scholar 

  22. Goldberg, S. and Glaubig, R. A.: 1988,Soil Sci. Am. J. 52, 1297.

    CAS  Article  Google Scholar 

  23. Greenland, D. J.: 1975,Clay Miner. 10, 407.

    CAS  Google Scholar 

  24. Griffin, R. A. and Burau, R. G.: 1974,Soil Sci. Soc. Am. Proc. 38, 892.

    CAS  Article  Google Scholar 

  25. Harper, T. R. and Kingham, W.: 1992,Water Environ. Res. 64, 200.

    CAS  Google Scholar 

  26. Harrison, J. B. and Berkheiser, V. E.: 1982,Clay Miner. 30, 97.

    CAS  Google Scholar 

  27. Hiltbold, A. E.: 1975, ‘Behavior of Organoarsenicals in Plants and Soils’, in Woolson, E. A. (ed.),Arsenical Pesticides, ACS Symp. Ser. 7, pp. 53–69.

  28. Hingston, F. J.: 1981, ‘A Review of Anion Adsorption’, in Anderson, M. A. and Rubin, A. J. (eds.),Adsorption of Inorganics at Solid-Liquid Interface. Ann Arbor Science Publication, Ann Arbor, USA, pp. 51–90.

    Google Scholar 

  29. Hingston, F. J.: 1970, Specific Adsorption of Anions on Goethite and Gibbsite, Ph.D. Deser. University of W. Australia, Nedlands.

    Google Scholar 

  30. Hingston, F. J., Posner, A. M. and Quirk, J. P.: 1971,Discuss. Faraday Soc. 52, 334.

    Article  Google Scholar 

  31. Hsia, T. H., Lo, S. L. and Lin, C. F.: 1992,Chemosphere 25, 1825.

    Article  CAS  Google Scholar 

  32. Huang, P. M.: 1975,Soil Sci. Soc. Am. Proc. 39, 271.

    CAS  Article  Google Scholar 

  33. Huysmans, K. D. and Frankenberger, W. T. Jr.: 1991,Sci. Total Environ. 105, 13.

    Article  CAS  Google Scholar 

  34. Jacobs, L. W., Syers, J. K. and Walker, T. W.: 1970,Soil Sci. Soc. Am. Proc. 34, 750.

    CAS  Article  Google Scholar 

  35. Jernelov, A.: 1975, Microbial Alkylation of Metals. Proc. Conf. on Heavy Metals in the Environment, Toronto, p. 845.

  36. Johnson, L. R. and Hiltbold, A. E.: 1969,Soil Sci. Soc. Am. Proc. 33, 279.

    CAS  Article  Google Scholar 

  37. Kabata-Pendias, A. and Pendias, H.: 1984,Trace Elements in the Biological Environment, Wyd. Geol. Warsaw, Poland, p. 300.

    Google Scholar 

  38. Kinniburgh, D. G., Jackson, M. L. and Syers, J. K.: 1976,Soil Sci. Soc. Am. J. 40, 796.

    CAS  Article  Google Scholar 

  39. Lindsay, W. L.: 1979,Chemical Equilibria in Soils, John Wiley & Sons, New York, pp. 449.

    Google Scholar 

  40. Lindsay, W. L. and Sadiq, M.: 1983,Sci of Total Environ. 28, 169.

    Article  CAS  Google Scholar 

  41. Lumsdon, D. G., Fraser, A. R. Russell, J. D. and Livesey, 1984,J. Soil Sci. 35, 381.

    CAS  Google Scholar 

  42. Machlis, L.: 1941,Plant Physiol. 16, 521.

    CAS  Article  Google Scholar 

  43. Maeda, S., Ohki, A., Saikoji, S. and Naka, K.: 1992,Separation Sci. Technol. 27, 681.

    CAS  Google Scholar 

  44. Malotky, D. T. and Anderson, M. A.: 1976,J. Colloid. Interface Sci. 4, 281.

    CAS  Google Scholar 

  45. Mandl, M. Matulova, P. and Docekalova, H.: 1992,Appl. Microbiol. Biotechnol. 38, 429.

    Article  CAS  Google Scholar 

  46. Masscheleyn, P. H., Delaune, R. D. and Patrick, W. H. Jr. 1991,Environ. Sci. Technol. 25, 1414.

    Article  CAS  Google Scholar 

  47. McBride, B. and Wolfe, R.: 1971,Biochem. 10, 4312.

    Article  CAS  Google Scholar 

  48. McKenzie, R. M.: 1981,Aust. J. Soil Res. 19, 41.

    Article  CAS  Google Scholar 

  49. Misra, S. G. and Tiwari, R. C.: 1963,Soil Sci. Plant. Nutr. 9, 10.

    Google Scholar 

  50. Murray, J. W.: 1974,J. Colloid. Interface Sci. 46, 357.

    Article  CAS  Google Scholar 

  51. Nightingale, H. I.: 1987,Water Resou. Bull. 23, 663.

    CAS  Google Scholar 

  52. Norrish, K.: 1975, ‘The Geochemistry and Mineralogy of Trace Elements’, in Nicholas, D. D. J. and Egan, A. R. (eds),Trace Elements in Soil-Plant-Animal System. Academic Press, New York, p. 55.

    Google Scholar 

  53. Nriagu, J. O.: 1988,Environ. Pollut. 50, 139.

    Article  CAS  Google Scholar 

  54. Otte, M. T., Dekkers, M. J., Rozema, J. and Broekman, R. A.: 1991,Can. J. Bot. 69, 2670.

    CAS  Google Scholar 

  55. Parfitt, R. L.: 1978,Adv. Agron. 30, 1.

    CAS  Article  Google Scholar 

  56. Parks, G. A.: 1967,Advances in Chem. Ser. 67, 121.

    Article  Google Scholar 

  57. Parks, G. A. and de Bruyn, P. L.: 1962,J. Phys. Chem. 66, 967.

    CAS  Google Scholar 

  58. Peryea, F. J.: 1991,Soil Sci. Soc. Am. J. 55, 1301.

    CAS  Article  Google Scholar 

  59. Pierce, M. I. and Moore, C. B.: 1980,Environ. Sci. Technol. 14, 214.

    Article  CAS  Google Scholar 

  60. Polemio, M., Senesi, N. and Bufo, S. A.: 1982a,Sci. Total Environ. 25, 71.

    Article  CAS  Google Scholar 

  61. Polemio, M., Bufo, S. A. and Senesi, N.: 1982b,Plant and Soil 69, 57.

    Article  CAS  Google Scholar 

  62. Roy, W. R., Ainsworth, C. C., Griffin, R. A. and Krapac, I. G.: 1984, ‘Development and Application of Batch Adsorption Procedures for Designing Earth Landfill Liners’, inProc. Ann. Madison Waste Conf. University of Wisconsin, Madison, pp. 309–398.

    Google Scholar 

  63. Roy, W. R., Hassett, J. J. and Griffen, R. A.: 1986,Soil Sci. Soc. Am. J. 50, 1176.

    CAS  Article  Google Scholar 

  64. Sachs, R. M. and Machaels, J. L.: 1971,Weed Sci. 19, 588.

    Google Scholar 

  65. Sadiq, M.: 1992,Toxic Metal Chemistry in Marine Environments, Marcel Dekker Inc. New York.

    Google Scholar 

  66. Sadiq, M.: 1986,Plant and Soil 91, 241.

    Article  CAS  Google Scholar 

  67. Sadiq, M. and Alam, I.: ‘Arsenic Chemistry in Shallow Groundwater Aquifers in the Eastern Province of Saudi Arabia’,Water, Air, and Soil Pollut. (in press).

  68. Sadiq, M. and Lindsay, W. L.: 1981,Selection of Standard Free Energies of Formation for use in Soil Chemistry. Arsenic. Supplement to Tech. Bull. 134, Colorado State University Experiment Station, Fort Collins, p. 39.

    Google Scholar 

  69. Schraufnagel, R. A.: 1983, ‘Arsenic in Energy Sources: A Future Supply or an Environmental Problem’, in Lederer, W. H. and Fensterheim, R. J. (eds.),Arsenic. Van Nostrand Reinhold Company, New York.

    Google Scholar 

  70. Sonderegger, J. L. and Ohguchi, T.: 1988,Environ. Geol. Water Sci. 11, 153.

    CAS  Google Scholar 

  71. Turner, A. W.: 1949,Nature 164, 76.

    CAS  Google Scholar 

  72. Wada, K. and Okamura, Y.: 1977, ‘Measurements of Exchange Capacities and Hydrolysis as Means of Characterizing Cation and Anion Retention by Soils’, Proc. Int. Seminar on Soil Environ. Fert. Manage. Intensive Agri. Tokyo, pp. 811–815.

    Google Scholar 

  73. Wauchope, R. D.: 1983, ‘Uptake, Translocation and Phytotoxicity of Arsenic in Plants’, in Lederer, W. H. and Fensterheim, R. J. (eds.),Arsenic, Van Nostrand Reinhold Company, New York, pp. 348–375.

    Google Scholar 

  74. Waychunas, G. A., Rea, B. A., Fuller, C. C. and Davis, J. A.: 1993,Geochim. Cosmochim. Acta 57, 2251.

    Article  CAS  Google Scholar 

  75. Weinberg, E. D.: 1977,Microorganisms and Minerals, Marcel Dekkar Inc. New York, p. 492.

    Google Scholar 

  76. White, R. E.: 1980,Soil Agri. 2, 71.

    Google Scholar 

  77. WHO: 1981,World Health Organization. Environmental Health Criteria, Arsenic, Geneva, p. 174.

  78. Wood, J. M.: 1974,Sci. 183, 1049.

    CAS  Google Scholar 

  79. Woolson, E. A.: 1977,Environ. Hlth Perspect. 19, 73.

    CAS  Google Scholar 

  80. Woolson, E. A., Axley, J. H. and Kearney, P. C.: 1971,Soil Sci. Soc. Am. Proc. 35, 938.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sadiq, M. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93, 117–136 (1997). https://doi.org/10.1007/BF02404751

Download citation

Key words

  • As chemical forms
  • As solid phase
  • As solubility
  • Biotransformation of As
  • As adsorption
  • Chemisorption