Advertisement

Computers and the Humanities

, Volume 9, Issue 2, pp 69–75 | Cite as

Tables for comparing the richness and structure of vocabulary in texts of different lengths

  • D. A. Ratkowsky
  • Linda Hantrais
Article

Keywords

Computational Linguistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubrocard, M. (1972). “Calcul d'un vocabulaire théorique et distribution de Waring-Herdan,”Études de linguistique appliquée (Nouvelle série, 6), Statistique et applications linguistiques 2, avril–juin, pp. 5-18.Google Scholar
  2. Guiraud, P. (1954).Les caractères statistiques du vocabulaire: essai de méthodologie, Paris: Presses universitaires françaises.Google Scholar
  3. Hantrais, L. (1970).Georges Brassens' Vocabulary, Ph.D. thesis, The Flinders University of South Australia, School of Humanities.Google Scholar
  4. Herdan, G. (1960).Type-token mathematics: a textbook of mathematical linguistics, The Hague: Mouton, pp. 26–33.Google Scholar
  5. Herdan, G. (1964).Quantitative linguistics, London: Butterworths, Chapter 10.Google Scholar
  6. Irwin, J. O. (1965). “A unified derivation of some well-known frequency distributions,”J. R. Statist. Soc. A, 118, 394–404.Google Scholar
  7. Johnson, N. L., and Kotz, S. (1969).Distributions in statistics, Volume 1:Discrete distributions, Boston: Houghton Mifflin, Chapter 10.Google Scholar
  8. Muller, C. (1964a). “Calcul des probabilités et calcul d'un vocabulaire,”Travaux de linguistique et de littérature, pp. 235–244.Google Scholar
  9. Muller, C. (1964b).Essai de statistique lexicale: L'illusion comique de Pierre Corneille Bibliothèque française et romane, Série A: Manuels et études linguistiques, 7), Centre de philologie romane de la faculté des lettres de Strasbourg, Klincksieck.Google Scholar
  10. Muller, C. (1965). “Du nouveau sur les distributions lexicales: la formule de Waring-Herdan,”Cahiers de lexicologie, 6, pp. 35–53.Google Scholar
  11. Muller, C. (1967).Étude de statistique Lexicale: le vocabulaire du théatre de Pierre Corneille, Paris: Larousse, p. 109.Google Scholar
  12. Muller, C. (1968).Initiation à la statistique linguistique, Paris: Larousse, pp. 172–9.Google Scholar
  13. Patil, G. G., and Joshi, S. W. (1968).A dictionary and bibliography of discrete distributions, Edinburgh: Oliver & Boyd, pp. 50–1.Google Scholar
  14. Yule, G. U. (1944).The statistical study of literary vocabulary, Cambridge, England: Cambridge University Press.Google Scholar
  15. Zipf, G. K. (1932).Selected studies of the principle of relative frequency in language, Cambridge, Mass.: Harvard University Press.Google Scholar

Copyright information

© Pergamon Press, Inc. 1975

Authors and Affiliations

  • D. A. Ratkowsky
    • 1
  • Linda Hantrais
    • 2
  1. 1.CSIROTasmanian Regional LaboratoryStowell Ave., Hobart, Tasmania, 7000Australia
  2. 2.Department of Modern LanguagesUniversity of AstonGosta Green, Birmingham B4 7ETEngland

Personalised recommendations