Skip to main content
Log in

Hydrogen effects in a dual-phase microalloy steel

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A dual-phase steel containing niobium, vanadium and titanium as microalloying elements was tested for hydrogen embrittlement (HE). The susceptibility to HE was observed to be closely related to the microstructural state. Hydrogenated specimens intercritically annealed at relatively low temperatures to develop martensite islands in a ferrite matrix basically exhibited quasi-cleavage fracture with some ductile dimpling. The mode of fracture in charged specimens quenched from higher intercritical annealing temperatures was predominantly intergranular fracture along prior austenite grain boundaries and cracking of martensite laths. The detrimental role of residual stresses, retained austenite and microalloying carbides in the process of HE is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Norberg andB. Aronsson,J. Iron Steel Inst. 206 (1968) 1263.

    Google Scholar 

  2. K. Narita,Trans. Iron Steel Inst. Jpn 15 (1975) 147.

    Google Scholar 

  3. G. L. Dunlop andP. J. Turner,Met. Sci. 9 (1975) 370.

    Google Scholar 

  4. D. C. Houghton, G. C. Weatherby andJ. D. Embury, in “Thermomechanical Processing of Microalloyed Austenite”, edited by A. J. De Ardo, G. A. Ratz and P. J. Wang (Metals Society, AIME, Warrendale, 1982) p. 267.

    Google Scholar 

  5. N. K. Balliger andR. W. K. Honeycombe,Met. Sci. 14 (1980) 121.

    CAS  Google Scholar 

  6. G. L. Dunlop andR. W. K. Honeycombe,ibid. 14 (1980) 367.

    Google Scholar 

  7. T. Gladman,Proc. R. Soc. 294 (1966) 298.

    CAS  Google Scholar 

  8. Idem., in “Recrystallization and Grain Growth of Multi-Phase and Particle Containing Materials”, edited by N. Hansen, A. R. Jones and T. Leffers (Riso National Laboratory, Riso, Denmark, 1980) p. 183.

    Google Scholar 

  9. C. J. Tweed, N. Hansen andB. Ralph,Met. Trans. 14A (1983) 2235.

    CAS  Google Scholar 

  10. W. B. Morrison andJ. H. Woodhead,J. Iron Steel Inst. 201 (1963) 43.

    CAS  Google Scholar 

  11. A. T. Davenport, F. G. Berry andR. W. K. Honeycombe,Met. Sci. 2 (1968) 104.

    CAS  Google Scholar 

  12. F. G. Berry andR. W. K. Honeycombe,MeT. Trans,1 (1970) 3279.

    CAS  Google Scholar 

  13. R. W. K. Honeycombe, in “Phase Transformation in Ferrous Alloys”, edited by A. R. Marder and J. I. Goldstein, (Metals Society, AIME, 1984) p. 259.

  14. J. M. Gray, T. Ko, Zhang Shouhau, Wu Baorong andXIE Xishan (eds), “HSLA Steels, Metallurgy and Applications”, Proceedings of International Conference, November 1985, Beijing (ASM, Ohio, 1986).

    Google Scholar 

  15. A. J. De Ardo (ed.), “Processing, Microstructure and Properties of HSLA Steels”, Proceedings of International Symposium, November 1987, Pittsburg, Pennsylvania (Minerals, Metals and Materials Society, Warrendale, 1988).

    Google Scholar 

  16. I. M. Bernstein, R. Garber andG. M. Pressouyre, in “Effects of Hydrogen on Behaviour of Materials”, edited by A. W. Thompson and I. M. Bernstein (TMS, New York, 1976) p. 27.

    Google Scholar 

  17. D. A. Ryder, T. Grundy andT. J. Davies, in Proceedings of 1st International Conference on Current Solutions to Hydrogen Problems in Steels, Washington, DC, November 1982, edited by C. G. Interrante and G. M. Pressouyre (ASM, Metals Park, 1982) p. 272.

    Google Scholar 

  18. P. Lacombe, M. Aucouturier andJ. Chene, in “Hydrogen Embrittlement and Stress Corrosion Cracking”, edited by R. Gibala and R. F. Hehemann (ASTM, Metals Park, 1984) p. 79.

    Google Scholar 

  19. T. Alp, B. Dogan andT. J. Davies,J. Mater. Sci. 22 (1987) 2105.

    Article  CAS  Google Scholar 

  20. A. McNabb andP. K. Foster,Trans. Met. Soc. AIME 227 (1963) 618.

    CAS  Google Scholar 

  21. H. H. Johnson andR. W. Lin, in “Hydrogen Effects in Metals”, Proceedings of 3rd International Conference on Effects of Hydrogen on Behaviour of Materials, Wyoming, August 1980, edited by I. M. Bernstein and A. W. Thompson (Metallurgical Society of AIME, Warrendale, 1981) p. 3.

    Google Scholar 

  22. R. A. Oriani,Acta Metall. 18 (1970) 147.

    Article  CAS  Google Scholar 

  23. R. Gibala, in “Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys”, edited by R. W. Staehle, J. Hochmann, R. D. McCright and J. E. Slater (NACE, Houston, 1977) p. 244.

    Google Scholar 

  24. J. P. Hirth,Met. Trans. 11A (1980) 861.

    CAS  Google Scholar 

  25. B. B. Rath andI. M. Bernstein,Met. Trans. A 2 (1971) 2845.

    CAS  Google Scholar 

  26. G. M. Pressouyre, PhD thesis, Carnegie-Mellon University (1977).

  27. G. M. Pressouyre andI. M. Bernstein,Corrosion Sci. 18 (1978) 819.

    Article  CAS  Google Scholar 

  28. G. M. Pressouyre,Acta Metall. 28 (1980) 1980.

    Google Scholar 

  29. S. Hayami andT. Furukawa, in Proceedings, “Micro-alloying 75”, London, Session 2A (Vanitec, London, 1975) p. 78.

    Google Scholar 

  30. M. S. Rashed, “A Unique High-Strength Sheet Steel with Superior Formability”, SAE reprint 760 206 (1976).

  31. R. A. Kot andJ. W. Morris (eds), “Structure and Properties of Dual-Phase Steels” (AIME, New York, 1979).

    Google Scholar 

  32. J. M. Rigsbee andP. J. Vanderarend, in “Formable HSLA and Dual-Phase Steels”, edited by A. T. Davenport (AIME, New York, 1979).

    Google Scholar 

  33. R. A. Oriani,Ann. Rev. Mater. Sci. 8 (1978) 327.

    Article  CAS  Google Scholar 

  34. I. M. Bernstein andA. W. Thompson, in “Hydrogen Embrittlement and Stress Corrosion Cracking”, edited by R. Gibala and R. F. Rehemann (ASM, Ohio, 1984) p. 135.

    Google Scholar 

  35. J. H. Woodhead, “Vanadium in High Strength Steels” (Vanitec, London, 1979) p. 3.

    Google Scholar 

  36. K. J. Irvine, F. B. Pickering andT. Gladman,J. Iron Steel Inst. 205 (1967) 161.

    CAS  Google Scholar 

  37. A. W. Thompson andI. M. Bernstein,Adv. Corros. Sci. Technol. 7 (1980) 53.

    CAS  Google Scholar 

  38. W. Cao andX.-P. Lu,Met. Trans. 18 (1987) 1569.

    Google Scholar 

  39. D. K. Matlock, G. Krauss, L. Ramos andG. S. Huppi, in “Structure and Properties of Dual-Phase Steels”, edited by R. A. Kot and J. W. Morris (AIME, New York, 1979) p. 62.

    Google Scholar 

  40. G. R. Speich, in “Metals Handbook”, Vol. 1, 10th Edn (ASM, Ohio, 1990) p. 424.

    Google Scholar 

  41. S. S. Hansen andR. R. Pradhan, in “Structure and Properties of Dual-Phase Steels” edited by R. A. Kot and J. W. Morris (AIME, New York, 1979) p. 113.

    Google Scholar 

  42. N. C. Goel, J. P. Chakravarty andK. Tangri,Met. Trans. A 18 (1987) 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alp, T., Iskanderani, F.I. & Zahed, A.H. Hydrogen effects in a dual-phase microalloy steel. J Mater Sci 26, 5644–5654 (1991). https://doi.org/10.1007/BF02403969

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02403969

Keywords

Navigation