Journal of Low Temperature Physics

, Volume 106, Issue 1–2, pp 101–131 | Cite as

Magnetic Levitation of liquid helium

  • M. A. Weilert
  • D. L. Whitaker
  • H. J. Maris
  • G. M. Seidel
Articles

Abstract

We report on the stable levitation of liquid helium drops of up to 2 cm diameter in a magnetic trap at temperatures down to 1.5 K in the earth's gravitational field. The production and properties of a magnetic trap for diamagnetic materials is discussed. The behavior of liquids in such a trap is analyzed, including the deformation of a liquid drop by the trap forces. We frequently observe two drops in the magnetic trap which are held in apparent contact for up to 3 minutes without coalescing. This non-coalescence effect was only seen above the superfluid transition temperature. We explain this effect in terms of the existence of a vapor layer between the drops caused by evaporation of the drops, much like the suspension of a liquid drop above a hot surface known as the Leidenfrost effect.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Encyclopedia of Occultism and Parapsychology, L. Shepard (ed.), Gale Research Co., Detroit, MI (1985).Google Scholar
  2. 2.
    J. Plateau, Annual Report of the Board of Regents of the Smithsonian Institution (1863), p. 207.Google Scholar
  3. 3.
    Rayleigh Lord,Phil. Mag. 28, 161 (1914).Google Scholar
  4. 4.
    T. G. Wang, E. H. Trinh, A. P. Croonquist, and D. D. Elleman,Phys. Rev. Lett. 56 452 (1986).CrossRefADSGoogle Scholar
  5. 5.
    R. A. Brown and L. E. Scriven,Proc. R. Soc. Lond. A 371, 331 (1980).ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    G. H. Bauer, R. J. Donnelly, and W. F. Vinen,J. Low T. Phys. 98, 47 (1995).CrossRefADSGoogle Scholar
  7. 7.
    G. M. Seidel and H. J. Maris,Physica B 194–196, 577 (1994).CrossRefGoogle Scholar
  8. 8.
    D. O. Edwards, G. G. Ihas, and C. P. Tam,Phys. Rev. B 16, 3122 (1977).CrossRefADSGoogle Scholar
  9. 9.
    J. W. Halleyet al., Phys. Rev. Lett. 71 2429 (1993).CrossRefADSGoogle Scholar
  10. 10.
    A. D. Myshkiset al., Low-Gravity Fluid Mechanics, translated by R. S. Wadhwa, (Springer-Verlag, 1987), Chap. 1.Google Scholar
  11. 11.
    E. H. Brandt,Science 243, 349 (1989).ADSGoogle Scholar
  12. 12.
    A. Ashkin,Phys. Rev. Lett. 24, 156 (1970).CrossRefADSGoogle Scholar
  13. 13.
    M. A. Weilert, D. L. Whitaker, H. J. Maris, and G. M. Seidel,J. Low T. Phys. 98, 17 (1995).CrossRefADSGoogle Scholar
  14. 14.
    Rayleigh, Lord,Phil. Mag. 14, 184 (1882).Google Scholar
  15. 15.
    S. Earnshaw,Trans. Cambridge Philos. Soc. 7, 97 (1842).Google Scholar
  16. 16.
    P. C. Nordine and R. M. Atkins,Rev. Sci. Inst. 53, 1456 (1982).CrossRefADSGoogle Scholar
  17. 17.
    Note that these formulas and all that follow are in Gaussian-cgs and that χ is the dimensionless ‘volumetric’ magnetic susceptibility. For reference, in MKSA units the magnetic force per unit volume on a material is\(4\pi \chi (\vec B \cdot \nabla )\vec B/\mu _0\), corresponding to a potential energy per unit volume of −2πχB 20.Google Scholar
  18. 18.
    W. Braunbeck,Z. Phys. 112, 753, 764 (1939). As described in REf. (3), the levitation of graphite is only easy for polycrystalline samples due to the large anisotropy in χ.CrossRefADSGoogle Scholar
  19. 19.
    E. Beaugnonet al., J. Phys. I 3, 399 (1993).CrossRefGoogle Scholar
  20. 20.
    C. G. Paine and G. M. Seide,Rev. Sci. Inst. 62, 3022 (1991).CrossRefADSGoogle Scholar
  21. 21.
    The susceptibility of helium has been measured several times that we are aware of22,23,24 but the experimental values are rather old and not very consistent, ranging from −1.88×10−6 to −2.02×10−6 cm3 mole−1. We have chosen to use the value of −1.8914×10−6 cm3 mole−1 calculated by Glick25 using Hylleraas wave functions. There seems to be a recent interest in the calculation of χ of noble-gas atoms due to apparent discrepancies between Hartree-Fock calculations and experimental values, see Ref. 26. Note also that the magnetic susceptibility of3He includes a temperature-dependent paramagnetic contribution from the nucleus, which at 1 K makes3He roughly as difficult to levitate as4He despite its lower atomic mass.Google Scholar
  22. 22.
    L. G. Hector,Phys. Rev. 24, 418 (1924); see also A. P. Wills and L. G. HectorPhys. Rev. 23, 209 (1924).CrossRefADSGoogle Scholar
  23. 23.
    G. C. HavensPhys. Rev. 43, 992 (1933).CrossRefADSGoogle Scholar
  24. 24.
    C. Barter, R. G. Meisenheimer, and D. P. Stevenson,J. Phys. Chem. 64, 1312 (1960).Google Scholar
  25. 25.
    R. E. Glick,J. Phys. Chem. 65, 1552 (1961).Google Scholar
  26. 26.
    L. C. Balbas, J. A. Alonso, and G. GorstelZ. Phys D 6, 219 (1987).CrossRefADSGoogle Scholar
  27. 27.
    J. Schmidt, C. Giese, and J. W. Halley,Proc. Am. Phys. Soc. 40 1049 (1995).Google Scholar
  28. 28.
    E. J. McNiff, B. L. Brandt, S. Foner, L. G. Rubin, and R. J. Weggel,Rev. Sci. Inst. 59, 2474 (1988).CrossRefADSGoogle Scholar
  29. 29.
    F. J. Brown, in Proceedings of the NASA/JPL 1994 Microgravity Low Temperature Physics Workshop, Washington, DC, edited by U. Israelsson and D. Strayer (unpublished).Google Scholar
  30. 30.
    The magnet was purchased from Oxford Instruments, Old Station Way, Eynsham, Witney, Oxon, England.Google Scholar
  31. 31.
    The potential energies in this discussion are calculated using a density of liquid helium of 0.145 g cm−3.Google Scholar
  32. 32.
    Janis Research Company, Inc., 2 Jewel Dr., Wilmington, Ma, USA.Google Scholar
  33. 33.
    Model MD4256 purchased from EG&G Reticon, 142 Potrero Ave Sunnyvale, Ca, USA.Google Scholar
  34. 34.
    J. G. Leidenfrost,De Aquae Communis Nonnullis Qualitatibus Tractatus, (A Tract About Some Qualities of Common Water), Duisburg, 1756; The pertinent portions are reprinted in translation inInt. J. Heat Mass Transfer 9, 1153 (1966).Google Scholar
  35. 35.
    B. Derjaguin and P. ProkhorovC. R. Acad. Sci. URSS 54, 507 (1946); reprinted inProg. Surf. Sci. 43, 273 (1993). In the experiments described, supported pendant drops of organic liquids are held in steady “contact” in air. The authors conclude that the drop surfaces are held apart by a layer of gas. The organic material evaporates into the air within the gap between the drops, and this air is thereby saturated with vapor. If the air surrounding the drops is unsaturated, air diffuses into the gap while the air-vapor mixture flows viscously out of the gap. These processes reach a steady-state situation in which the pressure in the gap is greater than atmospheric, and this excess pressure holds the drops apart. The fixed positions of the drops in these experiments allowed an optical (interferometric) determination of the profile of the gas layer between the drops.Google Scholar
  36. 36.
    R. Clift, J. R. Grace, and M. E. Weber,Bubbles, Drops and Particles, (Academic Press, New York, 1978), Chap. 10.Google Scholar
  37. 37.
    N. O. Young, J. S. Goldstein, and M. J. Block,J. Fluid Mech 6, 350 (1959).CrossRefADSMATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • M. A. Weilert
    • 1
  • D. L. Whitaker
    • 1
  • H. J. Maris
    • 1
  • G. M. Seidel
    • 1
  1. 1.Department of PhysicsBrown UniversityProvidenceUSA

Personalised recommendations