Journal of Materials Science

, Volume 27, Issue 19, pp 5348–5356 | Cite as

Fabrication and microstructure-mechanical property relationships in Ce-TZPs

  • J. Wang
  • X. H. Zheng
  • R. Stevens


Ceria-stabilized tetragonal zirconia polycrystals(Ce-TZPs) have been fabricated via conventional sintering of commercially available electrofused and electrorefined CeO2-doped ZrO2 powder at 1550°C for various periods from 0.5–30 h. The resultant grain sizes of the sintered materials were in the range 2–15 μm. The sintering of such electrorefined powder appears to occur by a liquid state sintering process, evinced in terms of the grain-size dependence on sintering time at 1550°C and by direct TEM observation. The mechanical properties of the sintered materials have been characterized, including single-edge notch bend fracture toughness and three-point bend fracture strength. The grain-size dependence of these properties in the CeO2-stabilized tetragonal polycrystals is very much different from that in Y2O3 stabilized tetragonal zirconia polycrystals (Y-TZPs). The transformation plasticity, which is represented by the yield stress behaviour and the total strain to fracture, plays an important role in the microstructure-property interrelationship in the Ce-TZPs.


Fracture Toughness Y2O3 Fracture Strength State Sinter Sintered Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Garvie, R. H. Hannink andR. T. Pascoe,Ceram. Steel, Nature (Lond.) 258 (1975) 703.CrossRefGoogle Scholar
  2. 2.
    A. G. Evans andR. M. Cannon,Acta Metall. 34 (1986) 761.CrossRefGoogle Scholar
  3. 3.
    I. Nettleship andR. Stevens,Int. J. High Tech. Ceram. 3 (1987) 1.CrossRefGoogle Scholar
  4. 4.
    K. Tsukuma andM. Shimada,J. Mater. Sci. 20 (1985) 1178.CrossRefGoogle Scholar
  5. 5.
    F. F. Lange,ibid. 17 (1982) 225.CrossRefGoogle Scholar
  6. 6.
    R. McMeeking andA. G. Evans,J. Amer. Ceram. Soc. 65 (1982) 242.Google Scholar
  7. 7.
    I. W. Chen andP. E. Reyes-Morel,ibid. 69 (1986) 181.CrossRefGoogle Scholar
  8. 8.
    J. Wang, M. Rainforth andR. Stevens,Brit. Ceram. Trans. J. 88 (1988) 1.Google Scholar
  9. 9.
    K. Tsukuma,Amer. Ceram. Soc. Bull. 65 (1986) 1386.Google Scholar
  10. 10.
    J. G. Duh, H. T. Dai andB. S. Chiou,J. Amer. Ceram. Soc. 71 (1988) 813.CrossRefGoogle Scholar
  11. 11.
    C. S. Yu andD. K. Shetty,J. Mater. Sci. 25 (1990) 2025.CrossRefGoogle Scholar
  12. 12.
    Idem., J. Amer. Ceram. Soc. 72 (1989) 921.CrossRefGoogle Scholar
  13. 13.
    P. E. Reyes-Morel andI. W. Chen,ibid. 71 (1988) 343.CrossRefGoogle Scholar
  14. 14.
    P. E. Reyes-Morel, J. Cherng andI. W. Chen,ibid. 71 (1988) 648.CrossRefGoogle Scholar
  15. 15.
    R. Stevens, “An Introduction to Zirconia”, 2nd Edn (MEL, Twickenham, 1986).Google Scholar
  16. 16.
    R. J. Brook,Scripta Metall. 2 (1968) 375.CrossRefGoogle Scholar
  17. 17.
    Idem., in “Treatise on Materials Science and Technology”, Vol. 2, edited by F. F. Y. Wang (Academic Press, New York, 1976) p. 331.Google Scholar
  18. 18.
    W. D. Kingery, H. K. Bowen andD. R. Uhlmann, “Introduction to Ceramics” (Wiley, New York, 1976).Google Scholar
  19. 19.
    R. C. Garvie,J. Phys. Chem. 69 (1965) 1238.Google Scholar
  20. 20.
    D. S. Dugdale,J. Mech. Phys. Solids 8 (1960) 100.CrossRefGoogle Scholar
  21. 21.
    L. R. F. Rose andM. V. Swain,Acta Metall. 36 (1988) 955.CrossRefGoogle Scholar
  22. 22.
    M. L. MeCartney andM. Ruhle,ibid. 37 (1989) 1859.CrossRefGoogle Scholar
  23. 23.
    I. W. Chen andY. H. Chiao,ibid. 31 (1983) 10.Google Scholar
  24. 24.
    Idem., ibid. 33 (1985) 1827.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • J. Wang
    • 1
  • X. H. Zheng
    • 2
  • R. Stevens
    • 3
  1. 1.IRC in Materials for High Performance ApplicationsThe University of BirminghamBirminghamUK
  2. 2.Department of Mechanical EngineeringBeijing Institute of TechnologyBeijingPeople's Republic of China
  3. 3.School of MaterialsThe University of LeedsLeedsUK

Personalised recommendations