Journal of Materials Science

, Volume 27, Issue 1, pp 111–121 | Cite as

Fracture mechanism of toughened epoxy resin with bimodal rubber-particle size distribution

  • T. K. Chen
  • Y. H. Jan


A bimodal rubber-particle distributed epoxy resin was made by simultaneous addition of two kinds of liquid rubbers, CTBN1300X9 and CTBN1300X13. These rubbers were added at a constant total rubber content but with varying weight ratios. The microstructure and fracture behaviour of these rubber-modified epoxy resins have been studied. A strong increase in the fracture resistance was found for the bimodal rubber-particle distributed epoxy resin. The role of the small particle is thought to toughen the shear bands between large particles. The role of large particle is thought to induce a large-scale shear deformation in the crack front. The synergistic effect of these particles gives rise to a strong increase in the toughness of these bimodal rubber-particle distributed epoxy systems.


Epoxy Rubber Large Particle Shear Band Shear Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Rowe, A. R. Siebert andR. S. Drake,Mod. Plastics 47 (1970) 110.Google Scholar
  2. 2.
    C. K. Riew, E. H. Rowe andA. R. Siebert,ACS Adv. Chem. Ser. 154 (1976) 326.Google Scholar
  3. 3.
    J. N. Sultan, R. C. Laible andF. J. McGarry,J. Appl. Polym. Sci. 6 (1971) 127.Google Scholar
  4. 4.
    J. N. Sultan andF. J. McGarry,Polym. Engng Sci. 13 (1973) 29.CrossRefGoogle Scholar
  5. 5.
    S. Kunz-Douglass, P. W. R. Beaumont andM. F. Ashby,J. Mater. Sci. 15 (1980) 1109.CrossRefGoogle Scholar
  6. 6.
    S. C. Kunz andP. W. R. Beaumont,ibid. 16 (1981) 3141.CrossRefGoogle Scholar
  7. 7.
    C. B. Bucknall andY. Yoshii,Brit. Polym. J. 10 (1978) 53.Google Scholar
  8. 8.
    C. B. Bucknall, “Toughened Plastics” (Applied Science, London, 1977).Google Scholar
  9. 9.
    W. D. Bascom, R. Y. Ting, R. J. Moulton, C. K. Riew andA. R. Siebert,J. Mater. Sci. 16 (1981) 2657.CrossRefGoogle Scholar
  10. 10.
    A. J. Kinloch, S. J. Shaw, D. A. Tod andD. L. Hunston,Polymer 24 (1983) 1341.CrossRefGoogle Scholar
  11. 11.
    A. J. Kinlogh, in “Structural Adhesives: Developments in Resins and Primer” (Eisevier Applied Science, London, 1986) p. 127.Google Scholar
  12. 12.
    A. F. Yee andR. A. Pearson,J. Mater. Sci. 21 (1986) 2462.CrossRefGoogle Scholar
  13. 13.
    Idem, ibid. 21 (1986) 2475.CrossRefGoogle Scholar
  14. 14.
    A. J. Kinloch, C. A. Finch andS. Hashemi,Polym. Commun. 28 (1987) 322.Google Scholar
  15. 15.
    R. A. Pearson andA. F. Yee,J. Mater. Sci. 24 (1989) 2571.CrossRefGoogle Scholar
  16. 16.
    A. J. Kinloch andD. L. Hunston,J. Mater. Sci. Lett. 6 (1987) 131.CrossRefGoogle Scholar
  17. 17.
    G. Levita, A. Marchetti, A. Lazzeri andV. Frosini,Polym. Engng Sci. 8 (1987) 141.Google Scholar
  18. 18.
    C. K. Riew andR. W. Smith,J. Polym. Sci. Al 1 (1971) 2739.CrossRefGoogle Scholar
  19. 19.
    E. E. Underwood, “Quantitative Sterology” (Addison-Wesley, Reading, MA, 1970) p. 109.Google Scholar
  20. 20.
    A. G. Guy, “Introduction to Material Science” (McGraw-Hill, New York, 1971).Google Scholar
  21. 21.
    S. Mostovoy, P. B. Crosley andE. J. Ripling,J. Mater. 2 (1967) 661.Google Scholar
  22. 22.
    L. T. Manzione andJ. K. Gillham,J. Appl. Polym. Sci. 26 (1981) 889.CrossRefGoogle Scholar
  23. 23.
    T. K. Chen andY. H. Jan,J. Mater. Sci. to be published.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • T. K. Chen
    • 1
  • Y. H. Jan
    • 1
  1. 1.Chemical Engineering DepartmentNational Central UniversityChung-LiTaiwan

Personalised recommendations