Skip to main content
Log in

Creep in non-ductile ceramics

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of a transition in creep behaviour in non-ductile ceramics (i.e. those with limited slip systems available) from diffusion controlled creep, to a mechanism involving non-viscous grain-boundary sliding and localized crack propagation is examined. Localized crack propagation is considered as a transition between diffusional creep and instantaneous fracture, and the fracture strength is used as a guide to predict the conditions necessary for the onset of this high strain-rate creep mechanism. In this way the variation in stress, temperature and grain size dependencies of creep rate reported in the literature for these materials may be explained and experimental evidence in support of the present hypothesis is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. R. N. Nabarro, “Deformation of Crystals by Motion of Single Ions”, in “Report of a Conference on the Strength of Solids” (Phys. Soc., London, 1948) pp. 75–90.

    Google Scholar 

  2. C. Herring,J. Appl. Phys. 21 (1950) 437.

    Article  Google Scholar 

  3. R. L. Coble,ibid 34 (1963) 679.

    Article  Google Scholar 

  4. A. H. Heuer, R. M. Cannon andN. J. Tighe in “Ultrafine Grain Ceramics”, (edited by J. J. Burke, N. L. Reed and Volker Weiss) Proceedings of the Fifteenth Sagamore Army Materials Research Conference (Syracuse University Press, 1960) pp. 339–365.

  5. E. M. Passmore andT. Vasilos,J. Amer. Ceram. Soc. 49 (1966) 166.

    CAS  Google Scholar 

  6. J. H. Hensler andG. V. Cullen,ibid 51 (1968) 557.

    CAS  Google Scholar 

  7. P. E. Evans,ibid 53 (1970) 365.

    CAS  Google Scholar 

  8. J. A. C. Marples andA. Hough, UKAEA Research Group Report AERE-R6421 (1970).

  9. A. Crosby andP. E. Evans,J. Mater. Sci. 8 (1973) 1573.

    Article  CAS  Google Scholar 

  10. L. E. Poteat andC. E. Yust,J. Amer. Ceram. Soc. 49 (1966) 410.

    CAS  Google Scholar 

  11. S. I. Warshaw andF. H. Norton,ibid 45 (1962) 479.

    CAS  Google Scholar 

  12. N. J. Petch,J. Iron Steel Inst. London 174 (1953) 25.

    CAS  Google Scholar 

  13. E. Orowan,Rep. Progr. Phys. 12 (1948) 186.

    Google Scholar 

  14. F. P. Knudsen,J. Amer. Ceram. Soc. 42 (1959) 376.

    CAS  Google Scholar 

  15. S. C. Carniglia, in “Materials Science Research” Vol. 3 (edited by W. W. Kriegel and Hayne PalmourIII) (Plenum, New York, 1966) pp. 425–471.

    Google Scholar 

  16. Idem, J. Amer. Ceram. Soc. 55 (1972) 243.

    CAS  Google Scholar 

  17. R. L. Coble andY. H. Guerard,ibid 46 (1963) 353.

    CAS  Google Scholar 

  18. G. M. Fryer andJ. P. Roberts,Proc. Brit. Ceram. Soc. 6 (1966) 225.

    Google Scholar 

  19. A. Crosby, Ph.D. Thesis, Manchester Univ. 1971.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crosby, A., Evans, P.E. Creep in non-ductile ceramics. J Mater Sci 8, 1759–1764 (1973). https://doi.org/10.1007/BF02403529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02403529

Keywords

Navigation