Journal of Materials Science

, Volume 6, Issue 12, pp 1433–1440 | Cite as

Low-temperature deformation behaviour of polycrystalline copper

  • D. H. Sastry
  • Y. V. R. K. Prasad
  • K. I. Vasu


Low-temperature plastic flow in copper was investigated by studying its tensile and creep deformation characteristics. The dependence of the flow stress on temperature and strain rate was used to evaluate the thermal activation energy while the activation area was derived from the change-in-stress creep experiments. A value of 0.6 eV was obtained for the total obstacle energy both in electrolytic and commerical copper. The activation areas in copper of three selected purities fell in the range 1200 to 100 b2. A forest intersection mechanism seems to control the temperature dependent part of the flow stress. The increase in the athermal component of the flow stress with impurity content in copper is attributed to a change in the dislocation density. The investigation also revealed that thermal activation of some attractive junctions also takes place during low-temperature creep. The model of attractive junction formation on a stress decrement during creep, yields a value of 45±10 ergs cm−2 for the stacking fault energy in copper.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. V. R. K. Prasad, D. H. Sastry, andK. I. Vasu,J. Indian Inst. Sci. 51 (1969) 377.Google Scholar
  2. 2.
    H. Conrad,J. Metals 16 (1964) 582.Google Scholar
  3. 3.
    J. C. M. Li, in “Dislocation Dynamics” (McGraw-Hill, New York, 1968) 87.Google Scholar
  4. 4.
    G. B. Gibbs,Mat. Sci. Eng. 4 (1969) 313.CrossRefGoogle Scholar
  5. 5.
    W. C. Overton andJ. Gaffney,Phys. Rev. 98 (1955) 969.CrossRefGoogle Scholar
  6. 6.
    Y. V. R. K. Prasad, D. H. Sastry, andK. I. Vasu,J. Mat. Sci. 5 (1970) 495.CrossRefGoogle Scholar
  7. 7.
    N. F. Mott,Phil. Mag. 43 (1952) 1151.Google Scholar
  8. 8.
    M. Lomer, in “Vacancies and Point Defects in Metals and Alloys” (J. Inst. Met. Symp. London, 1957) 79.Google Scholar
  9. 9.
    K. R. Evans andW. F. Flanagan,Phil. Mag. 17 (1968) 535.Google Scholar
  10. 10.
    P. R. Thornton andP. B. Hirsch,ibid 3 (1958) 738.Google Scholar
  11. 11.
    A. Seeger, in “Dislocations and Mechanical Properties of Crystals” (Wiley, New York, 1957) 243.Google Scholar
  12. 12.
    S. K. Mitra andJ. E. Dorn,Trans. Met. Soc. AIME 224 (1962) 1062.Google Scholar
  13. 13.
    H. Conrad, L. Hays, G. Schoeck, andH. Wiedersich,Acta Metallurgica 9 (1961) 367.CrossRefGoogle Scholar
  14. 14.
    D. H. Sastry, Y. V. R. K. Prasad, andK. I. Vasu,ibid 14 (1969) 1453.CrossRefGoogle Scholar
  15. 15.
    Idem, Met. Trans. 1 (1970) 1827.Google Scholar
  16. 16.
    J. Friedel, “Dislocations” (Pergamon Press, New York, 1964) 121, 221.Google Scholar
  17. 17.
    G. Saada, in “Electron Microscopy and Strength of Crystals” (Wiley, New York, 1963) 651.Google Scholar
  18. 18.
    D. McLean, “Mechanical Properties of Metals” (Wiley, New York, 1962) 98.Google Scholar
  19. 19.
    V. A. Pavlov, N. I. Noskova, andR. I. Kuzentsov,Phys. Metals and Metallography 24 (1967) 171.Google Scholar
  20. 20.
    P. C. J. Gallagher,Met. Trans,1 (1970) 2429.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1971

Authors and Affiliations

  • D. H. Sastry
    • 1
  • Y. V. R. K. Prasad
    • 1
  • K. I. Vasu
    • 1
  1. 1.Materials Research Group, Metallurgy DepartmentIndian Institute of ScienceBangaloreIndia

Personalised recommendations