Journal of Materials Science

, Volume 21, Issue 10, pp 3601–3610 | Cite as

Craze microstructure characterization by low-angle electron diffraction and Fourier transforms of craze images

  • Arnold C. -M. Yang
  • Edward J. Kramer
Papers

Abstract

Craze microstructure in thin film monodisperse polystyrene (PS) was determined by three equivalent, but independent, techniques: (1) low-angle electron diffraction (LAED) from the crazes, (2) the image analysis of microdensitometer scans of craze TEM images, and (3) optical transforms of the TEM images. Molecular weights of 11×104 and 18×105 were investigated. The average craze fibril spacings and fibril diameters in the samples were measured by LAED and then compared with those obtained from the image analyses. Excellent agreement was found between the three techniques, indicating that any one can be used for craze fibril structure exploration. While the craze fibril structure near the craze-matrix interface of crazes in both the 18×105 and 11×104 were similar, the fibril structure was coarser in the centre of 11×104 crazes than in 18×105 crazes. This effect is believed to be due to fibril coalescence in the centre of the low molecular weight crazes during the very low strain rate tensile deformation used to produce those crazes.

Keywords

Molecular Weight Fourier Transform Polystyrene Fibril Electron Diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Kambour,J. Polym. Sci. Macromol. Rev. 7 (1973) 1.CrossRefGoogle Scholar
  2. 2.
    S. Rabinowitz andP. Beardmore,CRC Rev. Macromol. Sci. 1 (1972) 1.Google Scholar
  3. 3.
    E. J. Kramer,Adv. Polym. Sci. 52/53 (1983) 1.CrossRefGoogle Scholar
  4. 4.
    A. N. Gent, “The Mechanics of Fracture”, Applied Mechanics Division, Vol. 19, edited by F. Erdogon (American Society of Mechanical Engineers, New York, 1976) p. 55.Google Scholar
  5. 5.
    E. J. Kramer,Polym. Eng. Sci. 24 (1984) 761.CrossRefGoogle Scholar
  6. 6.
    A. C.-M. Yang andE. J. Kramer,Bull. Amer. Phys. Soc. 29 (1984) 531.Google Scholar
  7. 7.
    A. N. Gent andA. G. Thomas,J. Polym. Sci. A2 10 (1972) 571.CrossRefGoogle Scholar
  8. 8.
    S. Wellinghoff andE. Baer,J. Macromol. Sci. Phys. B11 (1975) 367.Google Scholar
  9. 9.
    T. E. Brady andG. S. Y. Yeh,J. Mater. Sci. 8 (1973) 1083.CrossRefGoogle Scholar
  10. 10.
    G. L. Pitman andI. M. Ward,Polym. 20 (1979) 895.CrossRefGoogle Scholar
  11. 11.
    R. P. Kusy andD. T. Turner,ibid. 18 (1977) 391.CrossRefGoogle Scholar
  12. 12.
    P. Prentice,ibid. 24 (1983) 344.CrossRefGoogle Scholar
  13. 13.
    H. W. McCormick, F. M. Brower andL. Kin,J. Polym. Sci. 39 (1959) 87.CrossRefGoogle Scholar
  14. 14.
    A. M. Donald andE. J. Kramer,J. Polym. Sci. Polym. Phys. 20 (1982) 899.CrossRefGoogle Scholar
  15. 15.
    Idem, Polymer 23 (1982) 461.CrossRefGoogle Scholar
  16. 16.
    A. C.-M. Yang, E. J. Kramer, C. C. Kuo andS. L. Phoenix,Macromol., in press.Google Scholar
  17. 17.
    A. M. Donald, T. Chan andE. J. Kramer,J. Mater. Sci. 16 (1981) 669.CrossRefGoogle Scholar
  18. 18.
    E. Paredes andE. W. Fischer,Macromol. Chem. 180 (1979) 2707.CrossRefGoogle Scholar
  19. 19.
    H. R. Brown andE. J. Kramer,J. Macromol. Sci. Phys. B19 (1981) 487.Google Scholar
  20. 20.
    H. R. Brown,J. Polym. Sci. Polym. Phys. 21 (1983) 483.CrossRefGoogle Scholar
  21. 21.
    H. Mahl andW. Weitsch,Naturwiss. 46 (1959) 487.CrossRefGoogle Scholar
  22. 22.
    Idem, Z. Naturforsch. 15a (1960) 1051.Google Scholar
  23. 23.
    Idem, Optik 17 (1960) 487.Google Scholar
  24. 24.
    R. P. Ferrier, in “Advances in Optical and Electron Microscopy”, Vol. 3, edited by E. Baser and V. E. Cosslett (Academic, London, 1969) p. 155.Google Scholar
  25. 25.
    W. T. Scott,Rev. Mod. Phys. 35 (1963) 231.CrossRefGoogle Scholar
  26. 26.
    J. Smart andR. E. Burge,Nature, Lond. 205 (1965) 1297.Google Scholar
  27. 27.
    J. M. Cowley, “Diffraction Physics” (North-Holland, Amsterdam, 1975).Google Scholar
  28. 28.
    F. Lenz,Z. Naturforsch. 9a (1954) 185.Google Scholar
  29. 29.
    M. T. Tompsett, M. B. Hertage andC. W. B. Grigson,Nature, Lond. 215 (1967) 29.Google Scholar
  30. 30.
    G. H. Curtis andR. P. Ferrier,Proc. Electron Microsc. Soc. Amer. 27 (1969) 154.Google Scholar
  31. 31.
    A. C.-M. Yang andE. J. Kramer,J. Polym. Sci. Polym. Phys. 23 (1985) 1353.CrossRefGoogle Scholar
  32. 32.
    B. D. Lauterwasser andE. J. Kramer,Phil. Mag. A39 (1979) 469.Google Scholar
  33. 33.
    A. M. Donald andE. J. Kramer,J. Mater. Sci. 16 (1981) 2967.CrossRefGoogle Scholar
  34. 34.
    G. Porod,Kolloid Z. 124 (1951) 83.CrossRefGoogle Scholar
  35. 35.
    Idem, ibid. 125 (1952) 109.Google Scholar
  36. 36.
    B. D. Lauterwasser, PhD thesis, Cornell University (1979).Google Scholar
  37. 37.
    H. R. Brown,Ultramicroscopy 7 (1982) 263.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1986

Authors and Affiliations

  • Arnold C. -M. Yang
    • 1
  • Edward J. Kramer
    • 1
  1. 1.Department of Materials Science and Engineering and the Materials Science CenterCornell UniversityIthacaUSA

Personalised recommendations