Skip to main content
Log in

Analytical model for the swelling of sintered iron oxide pellets during the haematite-magnetite transformation

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An analytical model for the swelling of sintered iron oxide pellets was developed, based on the variation of the elastic properties arising from the crystallographic and morphological changes that occur during a reduction reaction. The model is restricted to the haematite-magnetite transformation since this phase change was found to represent the largest overall volume increase of the reduction process. It is proposed that this swelling is the result of forces causing sequential fissurization of the bonds between the grains undergoing chemical and structural changes. The relative compressive strengths of the haematite and magnetite particles, the porosity and the pellet morphology are major parameters of the model. Equations of swelling for topochemical and non-topochemical types of reduction are developed independently. The relative contribution of each type of reduction mechanism was found to depend on the effect of the additive agent in the pellet. The model was successfully tested by comparison with experimental swelling results for certain SiO2, Al2O3, CaO and MgO additions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Jallouli, PhD thesis, Ecole Polytechnique, Montreal (1981).

    Google Scholar 

  2. R. L. Bleifuss, in Proceedings of International Conference on Science and Technology of Iron and Steel, Suppl. II,Trans. Iron Steel Inst. Jpn (Tokyo, 1971) p. 52.

    Google Scholar 

  3. M. Ottow, PhD thesis, Technische Hochschule, Berlin (1966).

    Google Scholar 

  4. V. A. Gorbachev andS. G. Shavrin,Steel USSR 9 (10) (1979) 495.

    Google Scholar 

  5. Idem, russ. Metall. (3) (1980) 18.

  6. Idem, ibid. (2) (1980) 16.

  7. L. F. Alekseyev, V. A. Gorbachev andS. V. Shavrin,ibid. (5) (1980) 9.

  8. Idem, ibid. (6) (1980) 16.

  9. N. P. Alekseeva, V. V. Kashin, V. B. Fetisov andB. Z. Kudinov,Steel USSR 8(9) (1978) 187.

    Google Scholar 

  10. A. P. Butkarev, V. A. Gorbachev, G. M. Mayzel' andS. V. Shavrin,russ. Metall. (2) (1979) 42.

  11. A. P. Butkarev, V. A. Gorbachev, G. M. Mayzel', A. V. Chentzov andS. V. Shavrin,ibid. (6)

  12. Idem, Steel USSR 9(2) (1979) 57.

    Google Scholar 

  13. L. F. Alekseev, V. A. Gorbachev, G. M. Mayzel', T. V. Sapozhnikova andS. V. Shavrin,ibid. 9 (6) (1979) 265.

    Google Scholar 

  14. V. M. Abzalov, V. A. Gorbachev, G. M. Mayzel', A. V. Chentzov andS. V. Shavrin,ibid. 9(6) 1979) 26.

    Google Scholar 

  15. I. Shigaki, M. Sawada, M. Maekawa andK. Narita,Trans. Iron Steel Inst. Jpn. 22 (1982) 839.

    Google Scholar 

  16. J. O. Edstrom,J. Iron Steel Inst. 175 (1953) 289.

    CAS  Google Scholar 

  17. H. Brill-Edwards, B. L. Daniell andR. L. Samuel,ibid. 203 (1965) 361.

    CAS  Google Scholar 

  18. A. V. Bradshaw andA. G. Matyas,Met. Trans. B 7B (1976) 81.

    CAS  Google Scholar 

  19. J. R. Porter andP. R. Swann,Ironmaking & Steelmaking 4(5) (1977) 300.

    CAS  Google Scholar 

  20. P. R. Swann andN. J. Tighe,Met. Trans. B 8B (1977) 479.

    CAS  Google Scholar 

  21. P. C. Hayes andP. Grieveson,ibid. 12B (1981) 579.

    CAS  Google Scholar 

  22. J. Lanteigne, R. Roberge, H. Lehuy, J. L. Fihey andS. Foner,IEEE Trans. (Magn.) 17 (1) (1981) 265.

    Article  Google Scholar 

  23. H. Brill-Edwards, H. E. N. Stone andB. L. Daniell,J. Iron Steel Inst. 207 (1969) 1565.

    CAS  Google Scholar 

  24. M. D. Pepper andB. L. Daniell,ibid. 208 (1970) 553.

    Google Scholar 

  25. C. Offroy,Rev. Métall. 66 (1969) 491.

    CAS  Google Scholar 

  26. Y. Riquier andM. Nourricier,Métallurgie XI (4) (1971) 204.

    Google Scholar 

  27. A. Bessieres andP. Becker,Métall. Mem. Etudes Sci. Rev. 77 (1980) 1021.

    CAS  Google Scholar 

  28. J. Szekeley, J. W. Evans andH. Y. Sohn, “Gas Solid Reactions” (Academic Press, New York, 1976) p. 125.

    Google Scholar 

  29. H. Y. Sohn andM. E. Wadsworth, “Rate Processes of Extractive Metallurgy” (Plenum Press, New York, 1979) p. 30.

    Google Scholar 

  30. E. W. Thiele,Ind. Eng. Chem. 31 (1939) 916.

    Article  CAS  Google Scholar 

  31. S. Taniguchi, M. Ohmi andH. Fukuhara,Trans. Iron Steel Inst. Jpn. 18 (1978) 633.

    CAS  Google Scholar 

  32. S. Taniguchi andM. Ohmi,Trans. Jpn. Inst. Met. 19 (1978) 581.

    CAS  Google Scholar 

  33. M. Jallouli, M. Rigaud andF. Ajersch, in Proceedings of 3rd International Symposium on Agglomeration, Nurnberg, 1981, edited by O. Molerus and W. Hufnagel (Nurnberger Messe und Ausstellungsgesellschaft, Messencentrum) p. B81.

    Google Scholar 

  34. M. Jallouli, F. Ajersch andM. Rigaud, in Proceedings of International Symposium on the Physical Chemistry of Iron and Steelmaking, Toronto, August 1982 (Metallurgical Society of CIM) p. IV–11.

  35. P. C. Hayes andP. Grieveson,Met. Trans. 12B (1981) 319.

    CAS  Google Scholar 

  36. F. Ajersch, Pei He-Nian andM. Jallouli, in Proceedings of the 4th Symposium on Agglomeration (Publication AIME-155, AIME, Warrendale, Pennsylvania, 1985) p. 259.

    Google Scholar 

  37. L. D. Landau andE. M. Lifshitz, “Theory of Elasticity”, 2nd Edn (Pergamon, New York, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jallouli, M., Ajersch, F. Analytical model for the swelling of sintered iron oxide pellets during the haematite-magnetite transformation. J Mater Sci 21, 3528–3538 (1986). https://doi.org/10.1007/BF02402999

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02402999

Keywords

Navigation