Journal of Materials Science

, Volume 26, Issue 15, pp 4241–4249 | Cite as

Strengthening mechanisms in whisker-reinforced aluminium composites

  • C. Voituriez
  • I. W. Hall
Papers

Abstract

Silicon carbide whisker reinforced aluminium alloys were mechanically tested in the as-cast and heat treated conditions; the microstructures were examined by transmission electron microscopy. The mechanical properties were strongly dependent upon the nature of the matrix alloying elements, the heat treatment conditions and the processing routes. Al-Cu and Al 6061 reinforced alloys were very responsive to heat treatment while Al-Mg and Al-Si reinforced alloys were not. The microstructures and mechanical properties were analysed in an attempt to determine the operative strengthening mechanisms and deformation processes. Three distinct types of matrix microstructure were observed, distinguished by the presence or absence of subgrains and/or precipitates. Using these observations, the composite properties could be quite well modelled using dislocation theories, indicating that the matrix microstructure dominates the mechanical properties.

Keywords

Carbide Heat Treatment Aluminium Alloy Silicon Carbide Matrix Alloy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Papazian andP. N. Adler,Metall. Trans. 21A (1990) 401.Google Scholar
  2. 2.
    V. C. Nardone andK. M. Prewo,Scripta Metall. 20 (1986) 43.CrossRefGoogle Scholar
  3. 3.
    V. C. Nardone,ibid. 21 (1987) 1313.CrossRefGoogle Scholar
  4. 4.
    M. Taya andR. J. Arsenault,ibid. 21 (1987) 349.CrossRefGoogle Scholar
  5. 5.
    A. Levy andJ. M. Papazian,Metall. Trans. 21A (1990) 411.Google Scholar
  6. 6.
    R. J. Lederich andS. M. L. Sastry,Mater. Sci. Engng 55 (1982) 143.CrossRefGoogle Scholar
  7. 7.
    D. L. McDanels,Metall. Trans. 16A (1985) 1105.Google Scholar
  8. 8.
    F. J. Humphreys, in “Proceedings of the 9th Risø International Symposium on Metallurgy and Materials Science,” edited by S. I. Anderson, H. Lilholt and O. B. Pedersen (1988) pp. 51–74.Google Scholar
  9. 9.
    R. J. Arsenault andM. Taya, ICCM-5, edited by W. Harrigan, J. Strife and A. Dhingra (The Metallurgical Society of AIME, Warrendale, PA, 1988) pp. 21–36.Google Scholar
  10. 10.
    R. J. Arsenault andN. Shi,Mater. Sci. Engng. 81 (1986) 175.CrossRefGoogle Scholar
  11. 11.
    B. Derby andJ. R. Walker,Scipta Metall. 22 (1988) 529.CrossRefGoogle Scholar
  12. 12.
    R. J. Arsenault andR. M. Fisher,ibid. 17 (1983) 67.CrossRefGoogle Scholar
  13. 13.
    M. Vogelsang, R. J. Arsenault andR. M. Fisher,Metall. Trans. 17A (1986) 379.Google Scholar
  14. 14.
    R. J. McElnoy andZ. C. Skhopiak,Int. Met. Rev. 17 (1972) 175.Google Scholar
  15. 15.
    A. W. Thompson,Metall. Trans. 8A (1977) 833.Google Scholar
  16. 16.
    A. J. E. Foreman andM. J. Makin,Canad. J. Phys. 45 (1967) 511.Google Scholar
  17. 17.
    S. H. Goods andL. M. Brown,Acta Metall. 27 (1979) 1.CrossRefGoogle Scholar
  18. 18.
    J. D. Embury,Metall. Trans. 16A (1985) 2191.Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • C. Voituriez
    • 1
  • I. W. Hall
    • 1
  1. 1.Materials Science Program, Spencer LaboratoryUniversity of DelawareNewarkUSA

Personalised recommendations