Journal of Materials Science

, Volume 26, Issue 15, pp 4208–4214 | Cite as

Application of an indentation method to the fracture mechanics study of a polycrystalline graphite

  • T. Miyajima
  • M. Inagaki
  • M. Sakai
Papers

Abstract

None of the conventional indentation techniques are applicable to carbon and graphite materials for determining fracture mechanics parameters because of the difficulty in introducing well-defined median/radial cracks. A novel indentation method is proposed in this work for fracture mechanics studies and then applied to a polycrystalline graphite fracture. The most prominent advantage of the indenter designed is that the residual stresses beneath the indentation impression, which prevail in conventional indentation methods (Knoop and Vickers indentations) and lead to crucial difficulties in fracture mechanics analysis, are negligibly small. This makes possible a quantitative study on the microstructural interaction between the indentation-induced micro-flaw and the natural intrinsic flaws of the material. The dependence of flexural strength of a polycrystalline graphite on the indentation-induced surface flaw size is also discussed by examining the microstructural scaling transition of fracture origin from the indentation-induced to the intrinsic flaws with diminishing indentation surface flaw. An important role of the Mrozowsky micro-crack system in the scaling transition is emphasized.

Keywords

Residual Stress Flexural Strength Intrinsic Flaw Indentation Method Fracture Origin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ASTM Standard E399-83 in “Annual Book of ASTM Standards” (American Society for Testing and Materials, Philadelphia, 1983).Google Scholar
  2. 2.
    J. J. Mecholsky Jr, S. W. Freiman andR. W. Rice,J. Mater. Sci. 11 (1976) 1310.CrossRefGoogle Scholar
  3. 3.
    R. W. Rice, S. W. Freiman andJ. J. Mecholsky Jr,J. Amer. Ceram. Soc. 63 (1980) 129.Google Scholar
  4. 4.
    J. J. Mecholsky andS. W. Freiman, in “Fracture Mechanics Applied to Brittle Materials”, edited by S. W. Freiman, ASTM STP 678 (American Society for Testing and Materials, Philadelphia, 1979) p. 136.Google Scholar
  5. 5.
    J. G. P. Binner andR. Stevens,Trans. J. Br. Ceram. Soc. 83 (1984) 168.Google Scholar
  6. 6.
    P. Ostjic,Int. J. Fract. 33 (1987) 297.CrossRefGoogle Scholar
  7. 7.
    B. R. Lawn,Fract. Mech. Ceram. 5 (1983) 1.Google Scholar
  8. 8.
    D. B. Marshall,J. Amer. Ceram. Soc. 66 (1983) 127.Google Scholar
  9. 9.
    A. G. Evans andT. R. Wilshaw,Acta Metall. 24 (1976) 939.CrossRefGoogle Scholar
  10. 10.
    B. R. Lawn andR. Wilshaw,J. Mater. Sci. 10 (1975) 1049.CrossRefGoogle Scholar
  11. 11.
    B. R. Lawn, A. G. Evans andD. B. Marshall,J. Amer. Ceram. Soc. 63 (1980) 574.Google Scholar
  12. 12.
    J. J. Petrovic andM. G. Mendiratta, in “Fracture Mechanics Applied to Brittle Materials”, edited by S. W. Freiman, ASTM STP 678 (American Society for Testing and Materials, 1979) p. 83.Google Scholar
  13. 13.
    B. R. Lawn, A. G. Evans andD. B. Marshall,J. Amer. Ceram. Soc. 63 (1980) 574.Google Scholar
  14. 14.
    G. R. Anstis, P. Chantikul, B. R. Lawn andD. B. Marshall,ibid. 64 (1981) 533.Google Scholar
  15. 15.
    K. Tanaka,J. Mater. Sci. 22 (1987) 1501.CrossRefGoogle Scholar
  16. 16.
    P. Chantikul, G. R. Anstis, B. R. Lawn andD. B. Marshall,J. Amer. Ceram. Soc. 64 (1981) 539.Google Scholar
  17. 17.
    H. Hanyuu andM. Sakai, Unpublished Work, 1989.Google Scholar
  18. 18.
    J. C. Newman Jr andI. S. Raju, NASA Technical Note TP-1578, Washington, D.C., 1979.Google Scholar
  19. 19.
    Y. Murakami (ed.), “Stress Intensity Factors Handbook” (Pergamon, Oxford, 1987) p. 42.Google Scholar
  20. 20.
    M. Sakai, K. Urashima andM. Inagaki,J. Amer. Ceram. Soc. 66 (1983) 868.Google Scholar
  21. 21.
    M. Sakai andR. C. Bradt,Fract. Mech. Ceram. 7 (1986) 127.Google Scholar
  22. 22.
    M. Sakai, J. Yoshimura, Y. Goto andM. Inagaki,J. Amer. Ceram. Soc. 71 (1988) 609.CrossRefGoogle Scholar
  23. 23.
    B. T. Kelly, “Physics of Graphite” (Applied Science, London, 1981) Ch. 6.Google Scholar
  24. 24.
    S. Mrozowsky, in Proceedings of 1st and 2nd Carbon Conferences, Baltimore (Am. Carbon Soc, Buffalo, 1956) p. 31.Google Scholar
  25. 25.
    T. Miyajima andM. Sakai,J. Europ. Ceram. Soc. in press.Google Scholar
  26. 26.
    R. F. Cook, B. R. Lawn andC. J. Fairbanks,J. Amer. Ceram. Soc. 68 (1985) 604.Google Scholar
  27. 27.
    S. Usami, H. Kimoto, I. Takahashi andS. Shida,Eng. Fract. Mech. 23 (1986) 745.CrossRefGoogle Scholar
  28. 28.
    H. Neuber,Konstruction 20 (1968) 245.Google Scholar
  29. 29.
    R. A. Smith,Int. J. Fract. 13 (1977) 717.CrossRefGoogle Scholar
  30. 30.
    K. Tanaka,ibid. 22 (1983) R39.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • T. Miyajima
    • 1
  • M. Inagaki
    • 1
  • M. Sakai
    • 1
  1. 1.Department of Materials ScienceToyohashi University of TechnologyToyohashiJapan

Personalised recommendations