Skip to main content
Log in

Fracture characteristics of cement-stabilized soils

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fracture characteristics of cement-stabilized soil under Mode I (tensile) and Mode II (in-plane shear) were investigated on a series of cube specimens. The linear elastic fracture mechanics approach was applied to study the stress distribution in the specimens and also to determine the constitutive equations for fracture parametersK I andK II. The experimental studies were carried out on a range of 100 mm soil-cement cube specimens modified for fracture testing by inserting a series of slots. It was shown that results predicted by numerical models were in acceptable agreement with the experimental observations. The fracture parameterK I was found to be in the range 0.11–0.17 MN m−3/2 and the parameterK II in the range 0.31–0.45 MN m−3/2. This result indicated that the soil-cement exhibited a greater resistance to shear fracture than was expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

K :

Stress intensity factor

σ:

elastic stress field near the crack tip

f(a/w) :

Dimensionless parameter depending on geometries of the specimen and the crack

r :

Radial distance measured from the crack tip

U :

Area under load-deflection graph

dU :

Difference in potential energy for unit thickness between two identically loaded bodies

dA :

Increase in crack area

G :

Strain energy release rate

E :

Young's modulus

v:

Poisson's ratio

a :

Crack length

w :

Specimen width

B :

Specimen thickness

H :

Slot separation

σy :

Yield stress of material

K I,K II :

Fracture toughness in Mode I, Mode II

P :

Applied load

P max :

Load at failure

τ:

In-plane shear stress

References

  1. G. R. Irwin, “Fracture mechanics” (Pergamon Press, 1960) pp. 557–92.

  2. M. F. Kaplan,J. A.C.I. 58 (1961) 591.

    Google Scholar 

  3. Z. Bazant,Mater. Construct. 16 (93) (1983) 155.

    Google Scholar 

  4. P. F. Walsh,Indian Concr. J. 46 (1972) 469.

    Google Scholar 

  5. J. H. Brown,Mag. Concr. Res. 24 (81) (1972) 185.

    Google Scholar 

  6. M. Wecharatana andS. P. Shah,J. EMD ASCE 109 (1983) 1231.

    Google Scholar 

  7. M. Hillerborg, Modeer andP. E. Peterson,Cem. Concr. Res. 6 (1976) 773.

    Article  Google Scholar 

  8. Z. Bazant andP. A. Pheiffer, in “Proceedings of the 2nd Symposium on the Interaction of non-nuclear munitions with structures”, Panama City Beach, Florida, April (Private Communication, 1985).

  9. J. G. Rots andRene De Borst,J. Engng Mech. 113 (1987) 1739.

    Google Scholar 

  10. Z. P. Bazant andP. A. Pheiffer,Mater. Construct. (RILEM) 19 (1986) 111.

    Google Scholar 

  11. A. R. Ingraffea andW. Gerstle, “Application of Fracture Mechanics to Cementitious Composites” (Martinus Nijhoff, Dordrecht, 1985) pp. 247–85.

    Google Scholar 

  12. Y. S. Jeng andS. P. Shah,J. Engng Mech. ASCE 111 (1985) 1227.

    Article  Google Scholar 

  13. K. Visalvanich andA. E. Naaman,J. EMD ASCE 107 (EM6) (1981) 1155.

    Google Scholar 

  14. Z. P. Bazant,J. Engng Mech. ASCE 110 (1984) 518.

    Article  Google Scholar 

  15. Z. P. Bazant andL. Cedolin,J. Struct. Engng ASCE 110 (1984) 1336.

    Article  Google Scholar 

  16. Z. P. Bazant andP. A. Pheiffer, Center for Concrete and Geomaterials, Northwestern University, Evanston, Illinois, Report No. 86-8/428d (1986).

    Google Scholar 

  17. B. I. G. Barr andB. B. Sabir,Mag. Concr. Res. 37(131) (1985) 88.

    Article  Google Scholar 

  18. B. B. Sabir, PhD thesis, CNAA, London (1980).

    Google Scholar 

  19. J. Davies, T. G. Morgan andC. W. Yim,Int. J. Cem. Comp. Light. Concr. 9(1) (1987) 33.

    Article  Google Scholar 

  20. J. Davies,J. Mater. Sci. Lett. 6 (1987) 879.

    Article  CAS  Google Scholar 

  21. Idem., Int. J. Cem. Comp. Light Concr. 10 (1988) 3.

    Article  CAS  Google Scholar 

  22. Idem., “Fracture of Concrete and Rocks, Recent Developments” (Elsevier Applied Science, Cardiff, 1989) pp. 438–47.

    Google Scholar 

  23. Idem., in “Proceedings of the 4th International Conference on Civil Engineering and Structural Engineering Computing”, edited by B. H. V. Topping (Civil-Comp 89, London, 1989) pp. 351–60.

    Google Scholar 

  24. C. W. A. Yim, MPhil thesis, CNAA, London (1986).

    Google Scholar 

  25. BS1924: 1975, Methods of test for stabilised soils, Test 4 (British Standards Institution).

  26. BS1881: Part 116 (British Standards Institution).

  27. ASTM E 399-83, “Standard Test Method for Plane-Strain Fracture toughness” (American Society for Testing and Materials, Philadelphia, PA, 1984) pp. 519–54.

  28. K. P. George,Proc. ASCE J. Soil Mech. Founds. 96 (1970) 991.

    Google Scholar 

  29. D. B. Chisholm andD. L. Jones,Exp. Mech. 17 (1977) 7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, J. Fracture characteristics of cement-stabilized soils. J Mater Sci 26, 4095–4103 (1991). https://doi.org/10.1007/BF02402952

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02402952

Keywords

Navigation