Skip to main content

The effect of the second-phase volume fraction on the grain size stability and flow stress during superplastic flow of binary alloys


This paper considers to what extent the second-phase volume fraction in superplastic binary alloys affect the matrix grain size stability during deformation and, through it, the flow stress at constant temperature and strain rate. It is shown for five different superplastic binary alloy systems, that at constant temperature and strain rate the flow stress will increase with the deviation of the second-phase volume fraction in the alloys from that required for maximum matrix grain size stability. A new parameter (Z) which quantifies these deviations has been introduced in this paper. The possible errors in determining the pertinent parameters in the rate equation for superplastic flow by testing alloys withZ is discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. W. Edington, K. N. Melton andC. P. Cutler,Prog. Mater. Sci. 21 (1976) 61.

    CAS  Article  Google Scholar 

  2. 2.

    K. Smidoda, C. Gottshalk andM. Gleiter,Acta Met. 26 (1978) 1833.

    CAS  Article  Google Scholar 

  3. 3.

    A. Arieli andA. K. Mukherjee, in “Micromechanisms for Plasticity and Fracture in Engineering Solids” edited by D. M. R. Taplin (Pergamon Press, Oxford, 1981).

    Google Scholar 

  4. 4.

    R. B. Nicholson, in “Electron Microscopy and Structure of Materials”, edited by G. Thomas (University of California Press, Berkely, 1972) p. 689.

    Google Scholar 

  5. 5.

    A. Arieli andA. K. Mukherjee,Mater. Sci. Eng. 45 (1980) 61.

    Article  Google Scholar 

  6. 6.

    M. F. Ashby,Surface Sci. 31 (1972) 498.

    CAS  Article  Google Scholar 

  7. 7.

    A. K. Mukherjee,Ann. Rev. Mater. Sci. 9 (1979) 191.

    CAS  Article  Google Scholar 

  8. 8.

    T. H. Alden, in “Treatize on Materials Science and Technology”, Vol. 6, edited by R. J. Arsenaoult (Academic Press, New York, 1975) p. 226.

    Google Scholar 

  9. 9.

    S. Floreen,Scripta Met. 4 (1967) 19.

    Article  Google Scholar 

  10. 10.

    W. Beere,Scripta Met. 12 (1978) 337.

    CAS  Article  Google Scholar 

  11. 11.

    T. Gladman,Proc. Roy. Soc. A294 (1966) 298.

    Google Scholar 

  12. 12.

    J. W. Edington,Met. Tech. 3 (1976) 138.

    Google Scholar 

  13. 13.

    P. Hellman andM. Hillert,Scand. J. Metall. 4 (1975) 211

    CAS  Google Scholar 

  14. 14.

    C. W. Corti,Scripta Met. 12 (1978) 65.

    CAS  Article  Google Scholar 

  15. 15.

    R. E. Reed-Hill, “Physical Metallurgy Principles”, (Van Nostrand Co., New York, 1964).

    Google Scholar 

  16. 16.

    M. Suery andB. Baudelet,Phil. Mag. 41 (1980) 41.

    CAS  Google Scholar 

  17. 17.

    K. Matsuki, K. Minami, M. Tokizawa andY. Murakami,Met. Sci. 8 (1979) 619.

    Google Scholar 

  18. 18.

    G. Herriot, B. Baudelet andJ. J. Jonas,Acta Met. 24 (1976) 687.

    CAS  Article  Google Scholar 

  19. 19.

    O. A. Kaybishev, I. V. Kazachov andB. V. Rodionov,Fiz. Metal. Metalloved. 39 (1975) 338.

    Google Scholar 

  20. 20.

    S. Kayali, PhD Dissertation, Standford University (1976).

  21. 21.

    R. D. Caliguiri, PhD dissertation, Standford University (1977).

  22. 22.

    B. Walser andO. D. Sherby,Met. Trans. 10A (1979) 1461.

    CAS  Google Scholar 

  23. 23.

    F. A. Mohamed, M. M. I. Ahmed andT. G. Langdon,Met. Trans. 8A (1977) 933.

    CAS  Google Scholar 

  24. 24.

    L. C. A. Samuelsson, K. N. Melton andJ. W. Edington,Acta Met. 24 (1974) 1017.

    Article  Google Scholar 

  25. 25.

    A. Arieli andA. K. Mukherjee, presented at AIME Fall Meeting, Pittsburgh, PA, October 1980; also,Met. Trans. A, in press.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arieli, A. The effect of the second-phase volume fraction on the grain size stability and flow stress during superplastic flow of binary alloys. J Mater Sci 16, 2760–2766 (1981).

Download citation


  • Polymer
  • Grain Size
  • Constant Temperature
  • Flow Stress
  • Rate Equation