Journal of Materials Science

, Volume 16, Issue 10, pp 2753–2759 | Cite as

Development of oxide scale microstructure on single-crystal SiC

  • L. U. Ogbuji
Papers

Abstract

Microstructures of oxide scales on SiC single crystals, produced by oxidation at 1400° C for various lengths of time, were studied by light and transmission electron microscopy and by X-ray diffraction. At short oxidation times the oxide films were amorphous; at longer times they consisted of spherulitic cristobalite. The cristobalite is thought to grow by devitrification of the amorphous phase. No significant difference in oxide scale thickness or structures was found between commercial purity and semiconductor grade crystals.

Keywords

Oxide Polymer Microstructure Transmission Electron Microscopy Oxide Film 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. F. Knieppenberg,Philips Res. Rep. 18 (1963) 161.Google Scholar
  2. 2.
    P. Schuster andE. Gugel,Mater. Res. Bull. 4 (1969) S311.Google Scholar
  3. 3.
    G. Ervin, Jr,J. Amer. Ceram. Soc. 41 (1958) 347.Google Scholar
  4. 4.
    P. J. Jorgensen, M. E. Wadsworth andI. B. Cutler,ibid. 42 (1959) 613.Google Scholar
  5. 5.
    J. A. Dillon in “Silicon Carbide” edited by J. R. O'Connor and J. Smittens (Pergammon, New York, 1960) pp. 235–40.Google Scholar
  6. 6.
    R. C. A. Harris,J. Amer. Ceram. Soc. 58 (1965) 7.Google Scholar
  7. 7.
    E. A. Gulbransen, K. F. Andrew andF. A. Brassart,J. Electrochem. Soc. 113 (1966) 1311.Google Scholar
  8. 8.
    A. H. Heuer, L. U. Ogbuji andT. E. Mitchell,J. Amer. Ceram. Soc. 63 (1980) 354.Google Scholar
  9. 9.
    E. Fitzer andR. Ebi, in “Silicon Carbide — 1973” edited by R. C. Marshall, J. W. Faust, Jr and C. E. Ryan (University of South Carolina Press, Columbia, SC, 1974) pp. 320–8.Google Scholar
  10. 10.
    J. W. Hinze andW. C. Tripp, in “Mass Transport Phenomena in Ceramics”, edited by A. R. Cooper and A. H. Heuer (Plenum Press, New York, 1975) pp. 409–19.Google Scholar
  11. 11.
    “The System of Mineralogy”, Vol. III, edited by C. Frondel (J. Wiley and Sons, New York, 1962).Google Scholar
  12. 12.
    M. H. Lewis, J. Metcalf-Johansen andP. S. Bell,J. Amer. Ceram. Soc. 62 (1979) 278.CrossRefGoogle Scholar
  13. 13.
    S. W. Freiman, G. Y. Onoda, Jr andA. G. Pincus,J. Amer. Ceram. Soc. 55 (1972) 354.Google Scholar
  14. 14.
    H. D. Keith andF. J. Padden, Jr,JAP 34 (1963) 2409.CrossRefGoogle Scholar
  15. 15.
    A. V. Shubnikov,Sov. Phys. Crystallog. 2 (1959) 578.Google Scholar
  16. 16.
    H. D. Keith andF. J. Padden, Jr,J. Appl. Phys. 35 (1964) 1270.CrossRefGoogle Scholar
  17. 17.
    R. H. Redwine andM. A. Conrad, in “Ceramic Microstructures” edited by R. M. Fulrath and J. A. Pask (J. Wiley and Sons, New York, 1968) pp. 900–22.Google Scholar
  18. 18.
    F. E. Wagstaff andK. J. Richards,J. Amer. Ceram. Soc. 59 (1966) 118.Google Scholar
  19. 19.
    F. W. Ainger,J. Mater. Sci. 1 (1966) 1CrossRefGoogle Scholar
  20. 20.
    W. C. Triff andJ. W. Hinze, “Internal Structure and Physical Properties of Ceramics at High Temperatures”, Aerospace Research Laboratories Final Report ARL TR 75-1030, June 1975.Google Scholar
  21. 21.
    B. Lux,American Foundrymen's Society Cast Met. Res. J. 8 (1972) 25.Google Scholar
  22. 22.
    W. Bollman andB. Lux, Proceedings of the International Conference on the Metallography of Cast Iron, edited by B. Lux, I. Minkoff and F. Mollard (Georgi Publishing Company, Saphorin, Switzerland, 1974) pp. 461–71.Google Scholar
  23. 23.
    C. E. Miller,J. Cryst. Growth 42 (1977) 357.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1981

Authors and Affiliations

  • L. U. Ogbuji
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations