Journal of Materials Science

, Volume 16, Issue 3, pp 633–637 | Cite as

The ESR spectrum of Gd3+/MgO

  • J. S. Thorp
  • M. D. Hossain


Electron spin resonance studies have been made at 9.1 GHz on Gd3+/MgO single crystals grown by electrofusion and containing low gadolinium concentrations. A single isotropic line havingg=1.992±0.00024 was observed in contrast to the seven line spectrum reported by Abraham. The experimental peak-to-peak linewidth for the −1/2↔+1/2 transition at 293 K was 0.3 mT and was independent of polar angle. This was nearly one hundred times less than the calculated dipolar linewidth and analysis verified that the lineshape was Lorentzian indicating exchange narrowing. The linewidth was independent of temperature from 4.2 to 293 K and the exchange energy derived for a gadolinium concentration of 310 ppm was 15 GHz. A discussion is given of the cubic field splittings of Gd3+ in oxide crystals and a comparison made of the exchange energies of transition group ions in the MgO lattice.


Electron Spin Resonance Exchange Energy Polar Angle Transition Group Line Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Thorp, R. A. Vasquez, C. Adcock andW. Hutton,J. Mater. Sci. 11 (1976) 89.Google Scholar
  2. 2.
    J. S. Thorp, M. D. Hossain andL. J. C. Bluck,ibid. 14 (1979) 2853.CrossRefGoogle Scholar
  3. 3.
    J. S. Thorp, M. D. Hossain, L. J. C. Bluck andT. G. Bushell,ibid. 15 (1980) 903.CrossRefGoogle Scholar
  4. 4.
    D. Descamps andY. M. D. Aubigne,Phys. Lett. 8 (1964) 5.CrossRefGoogle Scholar
  5. 5.
    M. M. Abraham, L. A. Boatner, Y. Chen, J. L. Kolpus andR. W. Reynolds,Phys. Rev. B 4 (1971) 2853.CrossRefGoogle Scholar
  6. 6.
    R. W. Reynolds, L. A. Boatner, Y. Chen andM. M. Abraham,J. Chem. Phys. 60 (1974) 1593.CrossRefGoogle Scholar
  7. 7.
    B. Bleaney andK. W. Stevens,Rep. Prog. Phys. 16 (1953) 108.CrossRefGoogle Scholar
  8. 8.
    A. J. Shuskass,Phys. Rev. 127 (1962) 2022.CrossRefGoogle Scholar
  9. 9.
    J. L. Kolopus, L. V. Holroyd andK. E. Mann,Phys. Stat. Sol. 9 (1965) k95.Google Scholar
  10. 10.
    A. H. Van-Vleck andW. G. Penney,Phil. Mag. 17 (1934) 961.Google Scholar
  11. 11.
    R. D. Shannon andC. T. Prewitt,Acta. Cryst. B25 (1969) 925.Google Scholar
  12. 12.
    N. N. Greenwood, “Ionic Crystals Lattice Defects and Non-stoichiometry” (Butterworths, London, 1958) p. 144.Google Scholar
  13. 13.
    J. S. Thorp, G. Brown andH. P. Buckley,J. Mater. Sci. 9 (1974) 1337.CrossRefGoogle Scholar
  14. 14.
    M. M. Abraham, C. T. Butler andY. Chen,J. Chem. Phys. 55 (1971) 3752.CrossRefGoogle Scholar
  15. 15.
    W. Low,Annals. N. Y. Acad. Sci. 72 (1958) 71.Google Scholar
  16. 16.
    P. Auzins, J. W. Orton andJ. E. Wertz, “Paramagnetic Resonance”, Vol.1, edited by W. Low (Academic Press, New York, 1963) p. 90.Google Scholar
  17. 17.
    H. Watanabe,Prog. Theoret. Phys. (Kyoto) 18 (1957) 405.CrossRefGoogle Scholar
  18. 18.
    M. H. L. Pryce,Phys. Rev. 80 (1950) 1107.CrossRefGoogle Scholar
  19. 19.
    W. Low andU. Rosenberger,ibid. 116 (1959) 621.CrossRefGoogle Scholar
  20. 20.
    C. P. Poole, “Electron Paramagnetic Resonance”, (John Wiley and Sons, New York, 1967) p. 375.Google Scholar
  21. 21.
    J. S. Thorp andM. D. Hossain,J. Mater. Sci. 15 (1980).Google Scholar
  22. 22.
    G. Brown, C. J. Kirkby andJ. S. Thorp,ibid. 9 (1974) 65.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1981

Authors and Affiliations

  • J. S. Thorp
    • 1
  • M. D. Hossain
    • 1
  1. 1.Department of Applied Physics and ElectronicsUniversity of DurhamUK

Personalised recommendations