Skip to main content
Log in

Polymorphism in nylon 66

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The molecular structure of room temperature (RT) nylon 66 and its transition to the high temperature (HT) form have been examined by X-ray crystallographic techniques. An initial literature survey on the RT form revealed a number of anomalies in the spatial relationships of the molecules within the unit cell, namely, poor ethylenic segment packing, distortion of the amide group from a planar configuration and lack of similarity on the projected cell base between RT nylon 66 and RT nylon 6. These anomalies have been resolved, and models proposed which give a better fit between calculated and observed data. The remainder of the paper describes the examination of the HT form with the object of determining whether or not a three-dimensional hydrogen bonded network could exist beyond 180° C. By determining unit cell dimensions and measuring intermolecular hydrogen bond distances it was possible to eliminate certain directions for hydrogen bonded planes. On the basis that any such distance must not exceed about 0.31 nm, which is the maximum hydrogen bond distance reported in the literature, it was concluded that a three-dimensional network could not exist. The cause of the structural transition is attributed to progressive changes in ethylenic segment torsion angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Bunn andE. V. Garner,Proc. Roy. Soc. A 189 (1947) 39.

    CAS  Google Scholar 

  2. R. Brill,J. Prakt. Chem. 161 (1943) 49.

    Article  Google Scholar 

  3. G. F. Schmidt andH. A. Stuart,Z. Naturforsch. 13a (1958) 222.

    CAS  Google Scholar 

  4. W. P. Slitcher,J. Polymer Sci. 35 (1958) 77.

    Google Scholar 

  5. C. G. Cannon, F. P. Chappel andJ. I. Tidmarsh,J. Text. Inst. 54 (1963) T210-T221.

    Article  Google Scholar 

  6. J. D. Bernal,Proc. Roy. Soc. A 113 (1926) 117.

    Google Scholar 

  7. I. Pauling andR. B. Corey,Fortschr. Chem. Org. Natstoffe. 11 (1954) 180.

    CAS  Google Scholar 

  8. M. G. Northolt andL. E. Alexander,J. Phys. Chem. 72 (1968) 2838.

    Article  CAS  Google Scholar 

  9. M. G. Northolt andL. E. Alexander,Acta Cryst. B 27 (1971) 523.

    Article  CAS  Google Scholar 

  10. D. R. Holmes, C. W. Bunn andD. J. Smith,J. Polymer Sci. 17 (1955) 159.

    Article  CAS  Google Scholar 

  11. V. Vand andI. P. Bell,Acta Cryst. 4 (1951) 465.

    Article  CAS  Google Scholar 

  12. A. Keller andA. Marradudin,J. Phys. Chem. Solids. 2 (1957) 301.

    Article  CAS  Google Scholar 

  13. C. G. Cannon,Spectrochim. Acta 16 (1960) 302.

    Article  CAS  Google Scholar 

  14. H. G. Olf andA. Peterlin,J. Polymer Sci. A 2 9 (1971) 1449.

    Article  CAS  Google Scholar 

  15. D. S. Trifan andI. F. Terenzi,J. Polymer. Sci. 28 (1958) 443.

    Article  CAS  Google Scholar 

  16. E. Bessler andG. Bier,Makromol. Chem. 28 (1969) 443.

    Google Scholar 

  17. W. P. Slitcher,J. Polymer Sci. 35 (1959) 77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colclough, M.L., Baker, R. Polymorphism in nylon 66. J Mater Sci 13, 2531–2540 (1978). https://doi.org/10.1007/BF02402738

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02402738

Keywords

Navigation