Acta Mathematica

, Volume 186, Issue 2, pp 239–270 | Cite as

Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk

  • Amir Dembo
  • Yuval Peres
  • Jay Rosen
  • Ofer Zeitouni


Random Walk Thick Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bass, R. F. &Griffin, P. S., The most visited site of Brownian motion and simple random walk.Z. Wahrsch. Verw. Gebiete, 70 (1985), 417–436.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Bingham, N. H., Goldie, C. M. &Teugels, J. L.,Regular Variation. Encyclopedia Math. Appl., 27. Cambridge Univ. Press., Cambridge, 1987.Google Scholar
  3. [3]
    Dembo, A., Peres, Y., Rosen, J. &Zeitouni, O., Thick points for spatial Brownian motion: multifractal analysis of occupation measure.Ann. Probab., 28 (2000), 1–35.MathSciNetGoogle Scholar
  4. [4]
    —, Thin points for Brownian motion.Ann. Inst. H. Poincaré Probab. Statist., 36 (2000), 749–774.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Dembo, A. &Zeitouni, O.,Large Deviations Techniques and Applications, 2nd edition. Appl. Math., 38. Springer-Verlag, New York, 1998.Google Scholar
  6. [6]
    Einmahl, U., Extensions of results of Komlós, Major, and Tusnády to the multivariate case.J. Multivariate Anal., 28 (1989), 20–68.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Erdős, P. &Taylor, S. J., Some problems concerning the structure of random walk paths.Acta Math. Acad. Sci. Hungar., 11 (1960), 137–162.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Kahane, J.-P.,Some Random Series of Functions, 2nd edition. Cambridge Stud. Adv. Math., 5. Cambridge Univ. Press, Cambridge, 1985.Google Scholar
  9. [9]
    Kaufman, R., Une propriété metriqué du mouvement brownien.C. R. Acad. Sci. Paris Sér. A-B, 268 (1969), A727-A728.MathSciNetGoogle Scholar
  10. [10]
    Komlós, J., Major, P. &Tusnády, G., An approximation of partial sums of independent RV's, and the sample DF, I.Z. Wahrsch. Verw. Gebiete, 32 (1975), 111–131.CrossRefGoogle Scholar
  11. [11]
    Le Gall, J.-F. &Rosen, J., The range of stable random walks.Ann. Probab., 19 (1991), 650–705.MathSciNetGoogle Scholar
  12. [12]
    Lyons, R. &Pemantle, R., Random walks in a random environment and first-passage percolation on trees.Ann. Probab., 20 (1992), 125–136.MathSciNetGoogle Scholar
  13. [13]
    Mattila, P.,Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Stud. Adv. Math., 44. Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  14. [14]
    Mörters, P., The average density of the path of planar Brownian motion.Stochastic Process. Appl., 74 (1998), 133–149.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Orey, S. &Taylor, S. J., How often on a Brownian path does the law of the iterated logarithm fail?Proc. London Math. Soc. (3), 28 (1974), 174–192.MathSciNetGoogle Scholar
  16. [16]
    Pemantle, R., Peres, Y., Pitman, J. & Yor, M., Where did the Brownian particle go? To appear inElectron. J. Probab. Google Scholar
  17. [17]
    Perkins, E. A. &Taylor, S. J., Uniform measure results for the image of subsets under Brownian motion.Probab. Theory Related Fields, 76 (1987), 257–289.MathSciNetCrossRefGoogle Scholar
  18. [18]
    Ray, D., Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion.Trans. Amer. Math. Soc., 106 (1963), 436–444.MathSciNetCrossRefGoogle Scholar
  19. [19]
    Révész, P.,Random Walk in Random and Non-Random Environments. World Sci. Publishing, Teaneck, NJ, 1990.Google Scholar
  20. [20]
    Spitzer, F.,Principles of Random Walk. Van Nostrand, Princeton, NJ, 1964.Google Scholar

Copyright information

© Institut Mittag-Leffler 2001

Authors and Affiliations

  • Amir Dembo
    • 1
  • Yuval Peres
    • 2
    • 3
  • Jay Rosen
    • 4
  • Ofer Zeitouni
    • 5
  1. 1.Departments of Mathematics and StatisticsStanford UniversityStanfordUSA
  2. 2.Department of StatisticsUniversity of California at BerkeleyBerkeleyUSA
  3. 3.Institute of MathematicsHebrew UniversityJerusalemIsrael
  4. 4.Department of Mathematics College of Staten IslandCUNYStaten IslandUSA
  5. 5.Department of Electrical EngineeringTechnionHaifaIsrael

Personalised recommendations