Advertisement

Hyperfine Interactions

, Volume 31, Issue 1–4, pp 81–86 | Cite as

μ+SR study of vacancies in thermal equilibrium in ferromagnets

  • K. Fürderer
  • K.-P Döring
  • M. Gladisch
  • N. Haas
  • D. Herlach
  • J. Major
  • H. -J. Mundinger
  • J. Rosenkranz
  • W. Schäfer
  • L. Schimmele
  • M. Schmolz
  • W. Schwarz
  • A. Seeger
Muon and Pion Sites

Abstract

Muon spin precession frequencies and transverse relaxation rates have been measured on demagnetized iron, cobalt, and FeCo alloys (3 at%–50 at% Co) between room temperature and the Curie temperatureTc. The increase of the relaxation rate in iron between 930 K and 1010 K could be quantitatively attributed to the trapping of positive muons by vacancies in thermal equilibrium, resulting in an enthalpy of monovacancy formation ofH 1V F =(1.7±0.1) eV. the smallest vacancy concentrations detected are = 10−8.

Keywords

Iron Thin Film Enthalpy Cobalt Relaxation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    Yamada Conf. VII on Muon Spin Rotation and Associated Problems, eds. T. Yamazaki and K. Nagamine, Hyperfine Interact. 17–19 (1984) pp. 151–276Google Scholar
  2. /2/.
    A. Seeger, Crystal Lattice Defects 4 (1973) 221Google Scholar
  3. /3/.
    A. Seeger, Fundamental Aspects of Radiation Damage in Metals, eds. M.T. Robinson and F.W. Young, Jr. (US ERDA, Gatlinburg/Tenn., 1975), Conf. 751006-Pl, Vol. 1, p. 493.Google Scholar
  4. /4/.
    W. Schilling, P. Ehrhardt, K. Sonnenberg, Fundamental Aspects of Radiation Damage in Metals, eds. M.T. Robinson and F.W. Young, Jr. (US ERDA, Gatlinburg/Tenn., 1975) Conf. 751006-Pl, Vol. 1, p. 470.Google Scholar
  5. /5/.
    H.-E. Schaefer, Positron Annihilation, eds. P.G. Coleman, S.C. Sharma, L.M. Diana (North-Holland, Amsterdam, 1982) p. 369.Google Scholar
  6. /6/.
    W. Trost, K. Differt, K. Maier, A. Seeger, Atomic Transport and Defects in Metals by Neutron Scattering, eds. C. Janot, W. Petry, D. Richter, T. Springer (Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986), p. 219Google Scholar
  7. /7/.
    A. Seeger, Positron Annihilation, eds. P.C. Jain, J.M. Singru, K.P. Gopinathan (World Scientific Publ. Co. Singapur 1985), p. 48Google Scholar
  8. /8/.
    A. Seeger, Appl. Phys. 7 (1986), 85 and 257.CrossRefADSGoogle Scholar
  9. /9/.
    E. Yagi, H. Bossy, K.-P. Döring, M. Gladisch, D. Herlach, H. Matsui, H. Orth, G. zu Putlitz, A. Seeger, J. Vetter, Hyperfine Interact. 8 (1981) 553CrossRefGoogle Scholar
  10. /10/.
    A. Seeger, Hyperfine Interact. 17–19 (1984) 75CrossRefGoogle Scholar
  11. /11/.
    J. Major, K. Fürderer, D. Herlach, Rev. Sci. Instrum. 56 (1985) 1428CrossRefADSGoogle Scholar
  12. /12/.
    A. Seeger, in Positron Annihilation, eds. R.R. Hasiquti and K. Fujiwara (The Japan Institute of Metals, Sendai, 1979), p. 771Google Scholar
  13. /13/.
    D. Herlach, K. Fürderer, M. Fähnle, L. Schimmele, these proceedingsGoogle Scholar
  14. /14/.
    H.-E. Schaefer, K. Maier, M. Weller, D. Herlach, A. Seeger, and J. Diehl, Scr. Metall. 11 (1977) 803.CrossRefGoogle Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1986

Authors and Affiliations

  • K. Fürderer
    • 1
  • K.-P Döring
    • 2
  • M. Gladisch
    • 3
  • N. Haas
    • 1
  • D. Herlach
    • 2
  • J. Major
    • 2
  • H. -J. Mundinger
    • 3
  • J. Rosenkranz
    • 3
  • W. Schäfer
    • 3
  • L. Schimmele
    • 1
  • M. Schmolz
    • 1
  • W. Schwarz
    • 3
  • A. Seeger
    • 1
    • 2
  1. 1.Institut für PhysikMax-Planck-Institut für MetallforschungStuttgart 80Fed. Rep. of Germany
  2. 2.Institut für Theoretische und Angewandte PhysikUniversität StuttgartStuttgart 80Fed. Rep. of Germany
  3. 3.Physikalisches InstitutUniversität HeidelbergHeidelberg 1Fed. Rep. of Germany

Personalised recommendations