Skip to main content
Log in

Analysis of formaldehyde-inducedAdh mutations inDrosophila by RNA structure mapping and direct sequencing of PCR-amplified genomic DNA

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Two formaldehyde-induced mutations at the DrosophilaAdh locus (Adh fn45 andAdh fn46) were analyzed by determining RNA structures at different developmental stages, polymerase chain reaction (PCR) amplification of the affected genomic regions, and direct sequencing of the resulting double-stranded DNA fragments.Adh fn46 adults and larvae accumulate abundant ADH-like distal (adult) and proximal (larval) transcripts that are shorter than transcripts in wild-type flies by a lesion located in the second ADH protein-coding exon. Direct sequencing of the amplified DNA region showed thatAdh fn46 contains a 69-bp in-frame deletion that removes 23 amino acids near one border of the second exon. Consistent with these findings, we observed a shorter ADHfn46 protein present at only 3% of wild-type levels. In contrast,Adh fn45 adults and larvae accumulate much smaller amounts of ADH-like distal and proximal transcripts. Both RNAs have an identical aberration in RNA splicing of the 65-base intron sequence. Direct sequencing of the amplified mutated DNA region showed thatAdh fn45 contains a 21-bp deletion that removed and rearranged DNA at the 5′ splice junction of the 65-bp intron. No ADH cross-reacting material is detected inAdh fn45 flies. Direct-repeat sequences (3–11 bp) are present flanking and within the mutated DNA regions. The patterns of DNA deletion and deletion accompanied by sequence addition at the mutant sites suggest a slipped mispairing mechanism during DNA replication or repair that involves local DNA homology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auerbach, C. A., Moutschen-Dahmen, M., and Moutschen, J. (1977). Genetic and cytogenetical effects of formaldehyde and related compounds.Mutat. Res. 39317.

    CAS  PubMed  Google Scholar 

  • Benyajati, C., Place, A. R., Powers, D. A., and Sofer, W. (1981). Alcohol dehydrogenase gene ofDrosophila melanogaster: Relationship of intervening sequences to functional domains in the protein.Proc. Natl. Acad. Sci. USA 782717.

    CAS  PubMed  Google Scholar 

  • Benyajati, C., Place, A. R., Wang, N., Pentz, E., and Sofer, W. (1982). Deletions at intervening sequence splice sites in the alcohol dehydrogenase gene of Drosophila.Nucleic Acids Res. 107261.

    CAS  PubMed  Google Scholar 

  • Benyajati, C., Spoerel, N., Haymerle, H., and Ashburner, M. (1983a). The messenger RNA for alcohol dehydrogenase inDrosophila melanogaster differs in its 5′ end in different developmental stages.Cell 33125.

    Article  CAS  PubMed  Google Scholar 

  • Benyajati, C., Place, A. R., and Sofer, W. (1983b). Formaldehyde mutagenesis in Drosophila: Molecular analysis of ADH-negative mutants.Mutat. Res. 1111.

    CAS  PubMed  Google Scholar 

  • Benyajati, C., and Dray, J. F. (1984). Cloned Drosophila alcohol dehydrogenase genes are correctly expressed after transfection into Drosophila cells in culture.Proc. Natl. Acad. Sci. USA 811701.

    CAS  PubMed  Google Scholar 

  • Benyajati, C., Ayer, S., McKeon, J., Ewel, A., and Huang, J. (1987). Roles of cis-acting elements and chromatin structure in Drosophila alcohol dehydrogenase gene expression.Nucleic Acids Res. 157903.

    CAS  PubMed  Google Scholar 

  • Dottavio, M. D., and Ravel, J. M. (1978). Radiolabeling of proteins by reductive alkylation with [14C]-formaldehyde and sodium cyanoborohydride.Anal. Biochem. 87562.

    Article  Google Scholar 

  • Efstratiadis, A., Posakony, J. W., Maniatis, T., Lawn, R. M., O'Connell, C., Spritz, R. A., Deriel, J. K., Forget, B. G., Weissman, S. M., Slightom, J. L., Blechl, A. E., Smithies, O., Baralle, F. E., Shoulders, C. C., and Proudfoot, N. J. (1980). The structure and evolution of the human beta-globin gene family.Cell 21653.

    Article  CAS  PubMed  Google Scholar 

  • Ephrussi, B., and Beadle, G. W. (1936). A technique for transplantation for Drosophila.Am. Nat. 70218.

    Article  Google Scholar 

  • Hollocher, H., and Place, A. R. (1987). Re-examination of alcohol dehydrogenase structural mutants in Drosophila using protein blotting.Genetics 116253.

    CAS  PubMed  Google Scholar 

  • Jowett, T. (1986). In Roberts, D. B. (ed.),Drosophila, a Practical Approach IRL Press Washington D.C., Chap. 12.

    Google Scholar 

  • Kessler, S. W. (1975). Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with proteins. A.J. Immunol. 1151617.

    CAS  PubMed  Google Scholar 

  • Kreitman, M. (1983). Nucleotide polymorphism at the alcohol dehydrogenase locus ofDrosophila melanogaster.Nature 304412.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227680.

    Article  CAS  PubMed  Google Scholar 

  • Lindsley, D., and Grell, E. H. (1968). Genetic variations ofDrosophila melanogaster. Carnegie Institute of Washington Publication No. 627.

  • Lindsley, D., and Zimm, G. (1985). The genome ofDrosophila melanogaster. Genes A-K.Dros. Info. Serv. 6213.

    Google Scholar 

  • Martin, P. F., Place, A. R., Pentz, E., and Sofer, W. (1985). UGA nonsense mutation in the alcohol dehydrogenase gene ofDrosophila melanogaster.J. Mol. Biol. 184221.

    Article  CAS  PubMed  Google Scholar 

  • O'Donnell, J., Gerace, L., Leister, F., and Sofer, W. (1975). Chemical selections of mutants that affect alcohol dehydrogenase in Drosophila II. Use of 1-pentyne-3-ol.Genetics 7973.

    PubMed  Google Scholar 

  • O'Donnell, J., Mandel, H. C., Krauss, M., and Sofer, W. (1977). Genetic and cytogenetic analysis of theAdh region inDrosophila melanogaster.Genetics 86553.

    PubMed  Google Scholar 

  • Papanicolaou, C., and Ripley, L. S. (1989). Polymerase-specific differences in the DNA intermediates of frameshift mutagenesis:In vitro synthesis errors ofEscherichia coli DNA polymerase I and its large fragment derivative.J. Mol. Biol. 207335.

    Article  CAS  PubMed  Google Scholar 

  • Pelliccia, J. G., and Sofer, W. (1982). Synthesis and degradation of alcohol dehydrogenase in wild type and ADH-null activity mutants ofDrosophila melanogaster.Biochem. Genet. 20297.

    Article  CAS  PubMed  Google Scholar 

  • Place, A. R., Benyajati, C., and Sofer, W. (1987). Molecular consequences of two formaldehyde-induced mutations in the alcohol dehydrogenase gene ofDrosophila melanogaster.Biochem. Genet. 25621.

    Article  CAS  PubMed  Google Scholar 

  • Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.Science 239487.

    CAS  PubMed  Google Scholar 

  • Schwartz, M. F., and Jornvall, H. (1976). Structure analyses of mutant and wild-type alcohol dehydrogenases fromDrosophila melanogaster.Eur. J. Biochem. 68159.

    Article  CAS  PubMed  Google Scholar 

  • Skinner, D. M. (1976). Incorporation of labeled valine into the proteins of the Cercropia silkworm.Biol. Bull. 12165.

    Google Scholar 

  • Sofer, W., and Hatkoff, M. (1972). Chemical selection of alcohol dehydrogenase-negative mutants in Drosophila.Genetics 72545.

    CAS  PubMed  Google Scholar 

  • Sofer, W., and Martin, P. (1987). Analysis of alcohol dehydrogenase gene expression in Drosophila.Annu. Rev. Genet. 21203.

    Article  CAS  PubMed  Google Scholar 

  • Spielman, H., Erickson, R. P., and Epstein, C. J. (1974). The production of antibodies against mammalian LDH-1.Anal. Biochem. 59462.

    Article  CAS  PubMed  Google Scholar 

  • Streisinger, G., Okada, Y., Emrich, J., Newton, J., Tsugita, A., Terzaghi, E., and Inouye, M. (1967). Frameshift mutations and the genetic code.Cold Spring Harbor Symp. Quant. Biol. 3177.

    Google Scholar 

  • Thatcher, D. R. (1980). The complete amino acid sequence of three alcohol dehydrogenase alleloenzymes (ADHn11, ADHS and ADHUF) from the fruitfly Drosophila.Biochem. J. 187875.

    CAS  PubMed  Google Scholar 

  • Wong, C., Dowling, E. C., Saiki, K. R., Higuchi, G. R., Erlich, A. H., and Kazazian, H. H., Jr. (1987). Characterization of β-thalassemia mutations using direct genomic sequencing of amplified single copy DNA.Nature 330384.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Grant GM34850 from the National Institutes of Health to C.B. and Grant PCM-8110819 from the National Science Foundation to A.R.P. Long Le was an undergraduate de Kiewiet Summer Research Fellow in the Program in Biology and Medicine at the University of Rochester in the summer of 1988. This is contribution No. 129 from the Center of Marine Biotechnology, University of Maryland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, L., Ayer, S., Place, A.R. et al. Analysis of formaldehyde-inducedAdh mutations inDrosophila by RNA structure mapping and direct sequencing of PCR-amplified genomic DNA. Biochem Genet 28, 367–387 (1990). https://doi.org/10.1007/BF02401426

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02401426

Key words

Navigation