Advertisement

Biochemical Genetics

, Volume 28, Issue 5–6, pp 283–298 | Cite as

Biochemical characteristics and subcellular localizations of rat liver neuraminidase isozymes: A paradox resolved

  • Paul B. Samollow
  • Allen L. Ford
  • John L. VandeBerg
Article

Abstract

A striking discrepancy in the abilities of two analytical approaches (fluorometric and electrophoretic) to detect the effect of a gene,Neu-2, on rat liver neuraminidase phenotypes led us to examine the biochemical and physical properties of the liver isozymes NEU-1 and NEU-2 that might be responsible for this difference. Cell fractionation via Percoll gradient centrifugation revealed NEU-1 activity almost exclusively in the lysosomal cell fraction, while NEU-2 was strictly cytosolic in distribution. The two isozymes were also found to differ inpH activity curves and optima (optima: 4.6–4.8 and 5.4–5.8 for NEU-1 and NEU-2, respectively) and in solubility characteristics (NEU-2 highly soluble; NEU-1 relatively insoluble but solubilized by freezing/thawing). Both isozymes were found to be freeze-thaw stable in crude, whole-cell extracts, but NEU-1 was destabilized in the enriched (partially purified) lysosomal subcellular fraction. Consideration of these properties relative to those described previously for unidentified cytosolic and membrane bound (lysosomal) rat liver neuraminidases (Tulsiani, D. R. P., and Carubelli, R.,J. Biol. Chem. 245:1821, 1970) leads us to believe that NEU-2 also is destabilized by partial purification and that NEU-1 and NEU-2 have very different relative abundances within the cell. The biochemical and physical differences between NEU-1 and NEU-2 can account for the discrepant abilities of the fluorometric and electrophoretic approaches to detect the effects ofNeu-2. Ways to increase the sensitivity of the fluorometric approach for quantitative assays of specific NEU-1 and NEU-2 activity are discussed.

Key words

neuraminidase isozymes fluorometric assay enzyme destabilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alhadeff, J. A., and Wolfe, S. (1981). Characterization of human liver (4-methylumbelliferyl-α-D-N-acetylneuraminic acid) neuraminidase activity.Int. J. Biochem. 13975.CrossRefPubMedGoogle Scholar
  2. Ben-Yoseph, Y., Momoi, T., Hahn, L. C., and Nadler, H. L. (1982). Catalytically defective ganglioside neuraminidase in mucolipidosis IV.Clin. Genet. 21374.PubMedCrossRefGoogle Scholar
  3. Carubelli, R., and Tulsiani, D. R. P. (1971). Neuraminidase activity in brain and liver of rats during development.Biochim. Biophys. Acta 23778.PubMedGoogle Scholar
  4. Chigorno, V., Cardace, G., Pitto, M., Sonnino, S., Ghidoni, R., and Tettamanti, G. (1986). A radiometric assay for ganglioside sialidase applied to the determination of the enzyme subcellular location in cultured human fibroblasts.Anal. Biochem. 153283.CrossRefPubMedGoogle Scholar
  5. Dizik, M., and Elliott, R. W. (1977). A gene apparently determining the extent of sialylation of lysosomal α-mannosidase in mouse liver.Biochem. Genet. 1531.CrossRefPubMedGoogle Scholar
  6. Figueroa, F., Klein, D., Tewarson, S., and Klein, J. (1982). Evidence for placing theNeu-1 locus within the mouseH-2 complex.J. Immunol. 1292089.PubMedGoogle Scholar
  7. Gill, T. J., III, Kunz, H. W., Shaid, D. J., VandeBerg, J. L., and Stolc, V. (1982). Orientation of loci in the major histocompatibility complex of the rat and its comparison to man and the mouse.J. Immunogenet. 9281.PubMedGoogle Scholar
  8. McNamara, D., Beauregard, G., Nguyen, H. V., Yan, D. L. S., Bélisle, M., and Potier, M. (1982). Characterization of human placental neuraminidases. Stability, substrate specificity and molecular weight.Biochem. J. 205345.PubMedGoogle Scholar
  9. Miyagi, T., and Tsuiki, S. (1984). Rat-liver lysosomal sialidase. Solubilization, substrate specificity and comparison with the cytosolic sialidase.Eur. J. Biochem. 14175.CrossRefPubMedGoogle Scholar
  10. Pallman, B., and Sandhoff, K. (1980). Sialidase in brain and fibroblasts in three patients with different types of sialidosis.Adv. Exp. Med. Biol. 125401.Google Scholar
  11. Potier, M., Mameli, L., Bélisle, M., Dallaire, L., and Melanon, S. B. (1979). Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-α-D-N-acetylneuraminate) substrate.Anal. Biochem. 94287.CrossRefPubMedGoogle Scholar
  12. Sakuraba, H., Suzuki, Y., Fukuoka, K., and Hayashi, K. (1982). β-Galactosidase-neuraminidase deficiency. Deficiency of a freeze-labile neuraminidase in leukocytes and fibroblasts.J. Inher. Metab. Dis. 579.CrossRefPubMedGoogle Scholar
  13. Samollow, P. B., VandeBerg, J. L., Kunz, H. W., and Gill, T. J., III. (1985). Analysis of neuraminidase isozyme phenotypes in mammalian tissues: An electrophoretic approach.Biochem. Biophys. Res. Commun. 1261182.CrossRefPubMedGoogle Scholar
  14. Samollow, P. B., VandeBerg, J. L., Ford, A. L., Douglas, T. C., and David, C. S. (1986a). Electrophoretic analysis of liver neuraminidase-1 variation in mice and additional evidence concerning the location ofNeu-1.J. Immunogenet. 1329.PubMedGoogle Scholar
  15. Samollow, P. B., VandeBerg, J. L., Ford, A. L., Kunz, H. W., and Gill, T. J., III (1986b). Genetic analysis of liver neuraminidase isozymes inRattus norvegicus: Independent control of NEU-1 and NEU-2 phenotypes.Genetics 114247.PubMedGoogle Scholar
  16. Samollow, P. B., Ford, A. L., Kunz, H. W., and Gill, T. J., III (1987). Mapping theNeu-1 locus to the major histocompatibility complex (RT1) in the rat.Immunogenetics 26188.CrossRefPubMedGoogle Scholar
  17. Schaal, B. A., and Anderson, W. W. (1974). An outline of techniques for starch gel electrophoresis of enzymes from the American oysterCrassostrea virginica Gmelin. Technical Report of the Georgia Marine Science Center, 74–3.Google Scholar
  18. Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E., and Gentry, J. B. (1971). Biochemical polymorphism and systematics in the genusPeromyscus. I. Variation in the old field mouse (Peromyscus polionotus).Stud. Genet. VI Univ. Tex. Publ. 701349.Google Scholar
  19. Spaltro, J., and Alhadeff, J. A. (1984). Solubilization, stabilization and isoelectric focusing of human liver neuraminidase activity.Biochim. Biophys. Acta 800159.PubMedGoogle Scholar
  20. Spaltro, J., and Alhadeff, J. A. (1987). Cellular location and substrate specificity of isoelectric forms of human liver neuraminidase activity.Biochem. J. 241137.PubMedGoogle Scholar
  21. Suzuki, Y., Fukuoka, K., Sakuraba, H., Hayashi, K., and Ko, Y.-M. (1982). Galactosialidosis (β-galactosidase-neuraminidase deficiency): Clinical and biochemical studies on 13 patients.Adv. Exp. Med. Biol. 152241.PubMedGoogle Scholar
  22. Tettamanti, G., Durand, P., and Di Donato, S. (eds.) (1981).Sialidases and Sialidoses, Proc. Int. Symp. Sialidases and Sialidoses, Genoa, Italy, 1980 ed., Ermes s.r.l., Milan (Persp. Inher. Metab. Dis., Vol. 4).Google Scholar
  23. Tsuji, S., Yamada, T., Tsutsumi, A., and Miyatake, T. (1982). Neuraminidase deficiency and accumulation of sialic acid in lymphocytes in adult type sialidosis with partial β-galactosidase deficiency.Ann. Neurol. 11541.CrossRefPubMedGoogle Scholar
  24. Tulsiani, D. R. P., and Carubelli, R. (1970). Studies on the soluble and lysosomal neuraminidases of rat liver.J. Biol. Chem. 2451821.PubMedGoogle Scholar
  25. VandeBerg, J. L., Bittner, G. N., Meyer, G. S., Kunz, H. W., and Gill, T. J., III (1981). Linkage of neuraminidase and α-mannosidase to the major histocompatibility complex in the rat.J. Immunogenet. 8239.PubMedGoogle Scholar
  26. Verheijen, F. W., Janse, H. C., van Diggelen, O. P., Bakker, H. D., Loonen, M. C. B., Durand, P., and Galjaard, H. (1983). Two genetically different MU-NANA neuraminidases in human leucocytes.Biochem. Biophys. Res. Comm. 117470.CrossRefPubMedGoogle Scholar
  27. Visser, A., and Emmelot, P. (1973). Studies on plasma membranes. XX. Sialidase in hepatic plasma membranes.J. Membr. Biol. 1473.CrossRefPubMedGoogle Scholar
  28. Womack, J. E., and David, C. S. (1982). Mouse gene for neuraminidase activity (Neu-1) maps to theD end ofH-2.Immunogenetics 16177.CrossRefPubMedGoogle Scholar
  29. Womack, J. E., Yan, D. L. S., and Potier, M. (1981). Gene for neuraminidase activity on mouse chromosome 17 near H-2: Pleiotropic effects on multiple hydrolases.Science 21263.PubMedGoogle Scholar
  30. Yamada, T., Tsuji, S., Ariga, T., and Miyatake, T. (1983). Lysosomal sialidase deficiency in sialidosis with partial β-galactosidase deficiency.Biochim. Biophys. Acta 755106.PubMedGoogle Scholar
  31. Zeigler, M., and Bach, G. (1981). Cellular localization of neuraminidases in cultured human fibroblasts.Biochem. J. 198505.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Paul B. Samollow
    • 1
    • 2
  • Allen L. Ford
    • 2
  • John L. VandeBerg
    • 2
  1. 1.Department of BiologyLehigh UniversityBethlehem
  2. 2.Department of GeneticsSouthwest Foundation for Biomedical ResearchSan Antonio

Personalised recommendations