Advertisement

Biochemical Genetics

, Volume 30, Issue 11–12, pp 545–556 | Cite as

Restriction fragment length polymorphism (RFLP) analysis provides evidence for a high degree of homology of mitochondrial DNAs from rat hepatomasVersus normal rat livers

  • Richard A. Nakashima
  • Xin Li
  • J. Mark Bayouth
  • W. Christian Wigley
Article

Abstract

Where differences have been reported between tumor and normal mitochondrial DNA (mtDNA), they have generally involved limited modifications of the genome (Tairaet al., Nucleic Acids Res. 11:1635, 1983; Shay and Werbin,Mutat. Res. 186:149, 1987). However, Corralet al. (Nucleic Acids Res. 16:10935, 1988;17:5191, 1989) observed recombination between cytochrome oxidase subunit I (COI) and NADH dehydrogenase subunit 6 (ND6), two genes normally on opposite sides of the circular mitochondrial genome. In rat hepatoma mtDNA COI and ND6 were reported to be separated by only 230 base pairs (Corralet al., 1988, 1989). We have performed RFLP analysis on mtDNA from normal rat livers and rat hepatomas, using COI and ND6 probes. Additional experiments compared end-labeled DNA fragments produced byEcoRI andHindIII digestion of mtDNA. These studies failed to provide any evidence for genetic recombination in rat hepatoma mtDNA, even in the same cell line used by Corralet al. Rather, they support the conclusion that mtDNA from tumor and normal tissues exhibits a low degree of heterogeneity.

Key words

mitochondrial DNA Rattus norvegicus hepatoma restriction fragment length polymorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J. A., and Coombs, M. M. (1980). Covalent binding of polycyclic aromatic compounds to mitochondrial and nuclear DNA.Nature (Lond.) 287244.CrossRefPubMedGoogle Scholar
  2. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome.Nature 290457.CrossRefPubMedGoogle Scholar
  3. Backer, J. M., and Weinstein, I. B. (1982). Interaction of benzo(a)pyrene and its dihydrodiolepoxide derivative with nuclear and mitochondrial DNA in C3H10T1/2 cell cultures.Cancer Res. 422764.PubMedGoogle Scholar
  4. Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M. W., and Clayton, D. A. (1981). Sequence and gene organization of mouse mitochondrial DNA.Cell 26167.CrossRefPubMedGoogle Scholar
  5. Brown, G. G., and DesRosiers, L. J. (1983). Rat mitochondrial DNA polymorphism: Sequence analysis of a hypervariable site for insertions/deletions.Nucleic Acids Res. 116699.PubMedGoogle Scholar
  6. Cann, R. L., and Wilson, A. C. (1983). Length mutations in human mitochondrial DNA.Genetics 104699.PubMedGoogle Scholar
  7. Corral, M., Baffet, G., and Defer, N. (1988). Structure of a cDNA clone specific to hepatoma cells with rearranged mitochondrial sequences.Nucleic Acids Res. 1610935.PubMedGoogle Scholar
  8. Corral, M., Kitzis, A., Baffet, G., Paris, B., Tichonicky, L., Kruh, J., Guguen-Guillouzo, C., and Defer, N. (1989). RNAs containing mitochondrial ND6 and COI sequences present an abnormal structure in chemically induced rat hepatomas.Nucleic Acids Res. 175191.PubMedGoogle Scholar
  9. Enrietto, P. J., Payne, L. N., and Hayman, M. J. (1983). A recovered avian myelocytomatosis virus that induces lymphomas in chickens: Pathogenic properties and their molecular basis.Cell 35369.CrossRefPubMedGoogle Scholar
  10. Francisco, J. F., Brown, G. G., and Simpson, M. V. (1979). Further studies on types A and B rat mtDNAs: Cleavage maps and evidence for cytoplasmic inheritance in mammals.Plasmid 2426.CrossRefPubMedGoogle Scholar
  11. Gadaleta, G., Pepe, G., De Candia, G., Quagliariello, C., Sbisa, E., and Saccone, C. (1989). The complete nucleotide sequence of theRattus norvegicus mitochondrial genome: Cryptic signals revealed by comparative analysis between vertebrates.J. Mol. Evol. 28497.PubMedGoogle Scholar
  12. Gianni, A. M., Favera, R. D., and Polli, E. (1980). Restriction enzyme analysis of human leukemic mitochondrial DNA.Leukemia Res. 4155.CrossRefGoogle Scholar
  13. Goddard, J. M., Masters, J. N., Jones, S. S., Ashworth, W. D., Jr., and Wolstenholem, D. R. (1981).Chromosoma 82595.CrossRefPubMedGoogle Scholar
  14. Hartung, J. (1982). Might cancer be a failed response to renegade mitochondria?J. Theor. Biol. 94173.CrossRefPubMedGoogle Scholar
  15. Kaschnitz, R. M., Hatefi, Y., and Morris, H. P. (1976). Oxidative phosphorylation properties of mitochondria isolated from transplanted hepatoma.Biochim. Biophys. Acta 449224.CrossRefPubMedGoogle Scholar
  16. Koike, K., Taira, M., Kuchino, Y., Yaginuma, K., Sekiguchi, T., and Kobayashi, M. (1983). Mutations of the rat mitochondrial genome. In Schweyen, R. J., Wolf, K., and Kaudewitz, F. (eds.),Mitochondria 1983: Nucleo-Mitochondrial Interactions Walter de Gruyter, Berlin, pp. 371–387.Google Scholar
  17. Meinkoth, J., and Wahl, G. (1984). Hybridization of nucleic acids immobilized on solid supports.Anal. Biochem. 138267.CrossRefPubMedGoogle Scholar
  18. Morris, H. P. (1965). Studies on the development, biochemistry, and biology of experimental hepatomas.Adv. Cancer Res. 9227.PubMedCrossRefGoogle Scholar
  19. Morris, H. P., and Meranze, D. R. (1972). Induction and some characteristics of “minimal deviation” and other transplantable rat hepatomas.Recent Results Cancer Res. 44103.Google Scholar
  20. Niranjan, B. G., Bhat, N. K., and Avadhani, N. G. (1982). Preferential attack of mitochondrial DNA by aflatoxin B1 during hepatocarcinogenesis.Science 21573.PubMedGoogle Scholar
  21. Odashima, S. (1964). Establishment of ascites hepatomas in the rat, 1951–1962.Natl. Cancer Inst. Monogr. 1651.PubMedGoogle Scholar
  22. Pedersen, P. L. (1978). Tumor mitochondria and the bioenergetics of cancer cells.Prog. Exp. Tumor Res. 22190.PubMedGoogle Scholar
  23. Saccone, C., Pepe, G., Cantatore, P., Terpstra, P., and Kroon, A. M. (1976). Mapping of the transcription products of rat-liver mitochondria by hybridization. In Saccone, C., and Kroon, A. M. (eds.),The Genetic Function of Mitochondrial DNA Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 27–36.Google Scholar
  24. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  25. Sato, W., Tanaka, M., Ohno, K., Yamamoto, T., Takada, G., and Ozawa, T. (1989). Multiple populations of deleted mitochondrial DNA detected by a novel gene amplification method.Biochem. Biophys. Res. Comm. 162664.CrossRefPubMedGoogle Scholar
  26. Shay, J. W., and Werbin, H. (1987). Are mitochondrial DNA mutations involved in the carcinogenic process?Mutat. Res. 186149.PubMedGoogle Scholar
  27. Taira, M., Yoshida, E., Kobayashi, M., Yaginuma, K., and Koike, K. (1983). Tumor-associated mutations of rat mitochondrial transfer RNA genes.Nucleic Acids Res. 111635.PubMedGoogle Scholar
  28. Warburg, O. (1926). Versuche an uberlebendem carcinomgewebe.Biochem. Z. 142317.Google Scholar
  29. White, P. S., and Densmore, L. D., III. (1992). Mitochondrial DNA. In Holzel, R. (ed.),Molecular Analysis of Populations: A Practical Approach IRL Press, Oxford (in press).Google Scholar
  30. Wilkie, D., Egilsson, V., and Evans, I. H. (1975). Mitochondria in oncogenesis.Lancet 1697.CrossRefPubMedGoogle Scholar
  31. Wright, J. W., Spolsky, C., and Brown, W. M. (1983). The origin of the parthenogenetic lizardCnemidophorus laredoensis inferred from mitochondrial DNA analysis.Herpetologica 39410.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Richard A. Nakashima
    • 1
  • Xin Li
    • 1
  • J. Mark Bayouth
    • 1
  • W. Christian Wigley
    • 1
  1. 1.Department of Chemistry and BiochemistryTexas Tech UniversityLubbock

Personalised recommendations