The equine major plasma serpin multigene family: Partial characterization including sequence of the reactive-site regions

Abstract

The equine Pi system, which is highly polymorphic and was considered to be controlled by a single locus, has been shown to be controlled by four loci (namedSpi 1–4). This system is the equine equivalent of the major human plasma serpin (serine protease inhibitor), human α1PI. Twenty-two haplotypes of the equine Pi system have been characterized by two-dimensional electrophoresis, resulting in the assignment of pI,M r, and bovine trypsin and chymotrypsin inhibition characteristics to 109 proteins. These proteins have been analyzed further to determine their relatedness to each other as well as to human α1PI using immunochemical, structural, and functional criteria. The amino acid sequences of the N termini and reactive-site regions have been determined on proteins from each of the four equineSpi loci. This allowed the designation of the proteins from theSpi 1 locus as being METserpins and the functional equivalents of human α1PI. TheSpi 4 proteins are ARGserpins, and by alignment theSpi 2 proteins are ILEserpins, the first so far described. The P1 residue for theSpi 3 proteins was unable to be determined. The limited peptide and immunopeptide mapping revealed that proteins from all four loci were closely related, but within the four there were two pairs (Spi 1 and2 andSpi 3 and4) which were more related. All were probably derived from the same gene that gave rise to human α1PI.

This is a preview of subscription content, access via your institution.

References

  1. Beatty, K., Bieth, J. and Travis, J. (1980). Kinetics of association of serine proteases with native and oxidized α1-proteinase inhibitor and α1-antichymotrypsin.J. Biol. Chem. 2553931.

    PubMed  CAS  Google Scholar 

  2. Bell, K., Patterson, S., and Pollitt, C. C. (1984). The plasma protease inhibitor system (Pi) of Standardbred horses.Anim. Blood Grps. Biochem. Genet. 15191.

    CAS  Google Scholar 

  3. Board, P. G., Suzuki, T., and Shaw, D. C. (1988). Human muscle glutathioneS-transferase (GST-4) shows close homology to human liver GST-1.Biochim. Biophys. Acta 953214.

    PubMed  CAS  Google Scholar 

  4. Borriello, F., and Krauter, K. S. (1990). Reactive site polymorphism in the murine protease inhibitor gene family is delineated using a modification of the PCR reaction (PCR + 1).Nucleic Acids Res. 185481.

    PubMed  CAS  Google Scholar 

  5. Braend, M. (1970). Genetics of horse acidic prealbumins.Genetics 65495.

    PubMed  CAS  Google Scholar 

  6. Brennan, S. O., Borg, J.-Y., George, P. M., Soria, J., Caen, J., and Carrell, R. W. (1988). New carbohydrate site in mutant antithrombin (7 Ile → Asn) with decreased heparin affinity.FEBS Lett. 237118.

    Article  PubMed  CAS  Google Scholar 

  7. Carrell, R. (1984). Therapy by instant evolution.Nature 31214.

    Article  PubMed  CAS  Google Scholar 

  8. Carrell, R. W., and Boswell, D. R. (1986). Serpins: The superfamily of plasma serine proteinase inhibitors. In Barrett, A. J., and Salvesen, G. (eds.),Proteinase Inhibitors Elsevier Science, Amsterdam, pp. 403–420.

    Google Scholar 

  9. Carrell, R. W., and Owen, M. C. (1985). Plakalbumin, α1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis.Nature 317730.

    Article  PubMed  CAS  Google Scholar 

  10. Carrell, R., and Travis, J. (1985). α1-Antitrypsin and the serpins: Variation and countervariation.Trends Biochem. Sci. 1020.

    Article  CAS  Google Scholar 

  11. Carrell, R. W., Jeppsson, J.-O, Laurell, C.-B., Brennan, S. O., Owen, M. C., Vaughan, L., and Boswell, D. R. (1982). Structure and variation of human α1-antitrypsin.Nature 298329.

    Article  PubMed  CAS  Google Scholar 

  12. Carrell, R. W., Pemberton, P. A., and Boswell, D. R. (1987). The serpins: Evolution and adaption in a family of protease inhibitors.Cold Spring Harbor Symp. Quant. Biol. 52527.

    PubMed  CAS  Google Scholar 

  13. Chandra, T., Stackhouse, R., Kidd, V. J., Robson, K. J. H., and Woo, S. L. C. (1983). Sequence homology between human α1-antichymotrypsin, α1-antitrypsin, and antithrombin III.Biochemistry 225055.

    Article  PubMed  CAS  Google Scholar 

  14. Chao, S., Chai, K. X., Chao, L., and Chao, J. (1990). Molecular cloning and primary structure of rat α1-antitrypsin.Biochemistry 29323.

    Article  PubMed  CAS  Google Scholar 

  15. Diven, W. F., Vietmeier, B., Hempel, J., and Chambers, J. (1990). Purification andN-terminal characterization ofChinchilla villidera α1-antitrypsin.Comp. Biochem. Physiol. 95B39.

    CAS  Google Scholar 

  16. Ek, N., and Braend, M. (1980). Quantitative comparisons of acidic prealbumin (Pr) phenotypes in horses.Acta Vet. Scand. 21380.

    PubMed  CAS  Google Scholar 

  17. Hill, R. E., and Hastie, N. D. (1987). Accelerated evolution in the reactive centre regions of serine protease inhibitors.Nature 32696.

    Article  PubMed  CAS  Google Scholar 

  18. Hill, R. E., Shaw, P. H., Barth, R. K., and Hastie, N. B. (1985). A genetic locus closely linked to a protease inhibitor gene complex controls the level of multiple RNA transcripts.Mol. Cell. Biol. 52114.

    PubMed  CAS  Google Scholar 

  19. Hofker, M. H., Nelen, M., Klasen, E. C., Nukiwa, T., Curiel, D., Crystal, R. G., and Frants, R. R. (1988). Cloning and characterization of an α1-antitrypsin like gene 12 kb downstream of the genuine α1-antitrypsin gene.Biochem. Biophys. Res. Commun. 155634.

    Article  PubMed  CAS  Google Scholar 

  20. Holmes, W. E., Lijnen, H. R., and Collen, D. (1987). Characterization of recombinant human α2-antiplasmin and of mutants obtained by site directed mutagenesis of the reactive site.Biochemistry 265133.

    Article  PubMed  CAS  Google Scholar 

  21. Jallat, S., Carvallo, D., Tessier, L. H., Roecklin, D., Roitsch, C., Ogushi, F., Crystal, R. G., and Courtney, M. (1986). Altered specificities of genetically engineered α1 antitrypsin variants.Protein Eng. 129.

    PubMed  CAS  Google Scholar 

  22. Jeppsson, J.-O., Laurell, C.-B., and Fagerhol, M. (1978). Properties of isolated human α1-antitrypsins of Pi types M, S and Z.Eur. J. Biochem. 83143.

    Article  PubMed  CAS  Google Scholar 

  23. Juneja, R. K., Gahne, B., and Sandberg, K. (1979). Genetic polymorphism and close linkage of two α1-protease inhibitors in horse serum.Anim. Blood Grps. Biochem. Genet. 10235–251.

    CAS  Google Scholar 

  24. Kelsey, G. D., Parker, M., and Povey, S. (1988). The human alpha-1-antitrypsin-related sequence gene: Isolation and investigation of its expression.Ann. Hum. Genet. 52151.

    PubMed  CAS  Google Scholar 

  25. Koide, T., Foster, D., and Odani, S. (1986). The heparin-binding site(s) of histidine rich glycoprotein a suggested by sequence homology with antithrombin III.FEBS Lett. 194242.

    Article  PubMed  CAS  Google Scholar 

  26. Krauter, K. S., Citron, B. A., Hsu, M. T., Powell, D., and Darnell, J. E., Jr. (1986). Isolation and characterization of the α1-antitrypsin gene of mice.DNA 529.

    PubMed  CAS  Article  Google Scholar 

  27. Kress, L. F. (1986). Inactivation of human plasma serine proteinase inhibitors (serpins) by limited proteolysis of the reactive site loop with snake venom and bacterial metalloproteinases.J. Cell. Biochem. 3251.

    Article  PubMed  CAS  Google Scholar 

  28. Kurachi, K., Chandra, T., Friezner Degen, S. J., White, T. T., Marchioro, T. L., Woo, S. L. C., and Davie, E. W. (1981). Cloning and sequence of cDNA coding for α1-antitrypsin.Proc. Natl Acad. Sci. USA 786826.

    PubMed  CAS  Google Scholar 

  29. Laegreid, W. W., Breeze, R. G., and Counts, D. F. (1982). Isolation and some properties of equine α1-antitrypsin.Int. J. Biochem. 14327.

    Article  PubMed  CAS  Google Scholar 

  30. Laskowski, M. (1980). An algorithmic approach to sequence → reactivity of proteins, specificity of protein inhibitors of serine proteinases.Biochem. Pharmacol. 292089.

    Article  PubMed  CAS  Google Scholar 

  31. Laskowski, M., Jr., Kato, I., Kohr, W. J., Park, S. J., Tashiro, M., and Whatley, H. E. (1987). Positive Darwinian selection in evolution of protein inhibitors of serine proteinases.Cold Spring Harbor Symp. Quant. Biol. 52545.

    PubMed  CAS  Google Scholar 

  32. Lindmark, B., Lilja, H., Alm, R., and Eriksson, S. (1989). The microheterogeneity of desialylated α1-antichymotrypsin: The occurrence of two amino-terminal isoforms, one lacking a his-pro dipeptide.Biochim. Biophys. Acta 99790.

    PubMed  CAS  Google Scholar 

  33. Loebermann, H., Tokuoka, R., Deisenhofer, J., and Huber, R. (1984). Human α1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function.J. Mol. Biol. 177531.

    Article  PubMed  CAS  Google Scholar 

  34. Nukiwa, T., Brantly, M. L., Ogushi, F., Fells, G. A., and Crystal, R. G. (1988). Characterization of the gene and protein of the common α1-antitrypsin normal M2 allele.Am. J. Hum. Genet. 43322.

    PubMed  CAS  Google Scholar 

  35. Okayama, H., Holmes, M. D., Brantly, M. L., and Crystal, R. G. (1989). Characterization of the coding sequence of the normal M4 α1-antitrypsin gene.Biochem. Biophys. Res. Commun. 1621560.

    Article  PubMed  CAS  Google Scholar 

  36. Papamokos, E., Weber, F., Bode, W., Huber, R., Empie, M. W., Kato, I., and Laskowski, M. (1982). Crystallographic refinement of Japanese quail ovomucoid, a Kazal-type inhibitor, and model building studies of complexes with serine proteases.J. Mol. Biol. 158515.

    Article  PubMed  CAS  Google Scholar 

  37. Patterson, S. D., and Bell, K. (1986). The equine protease inhibitory system (Pi): Abnormal expressions of PiF, PiL, and PiS1.Biochem. Genet. 24529.

    Article  PubMed  CAS  Google Scholar 

  38. Patterson, S. D., and Bell, K. (1987a). ISO-DALT characterization of 12 “new” equine plasma protease inhibitor (Pi) alleles.Anim. Genet. 18167.

    PubMed  CAS  Article  Google Scholar 

  39. Patterson, S. D., and Bell, K. (1987b). Frequencies of plasma protease inhibitor alleles in Australian horse breeds and the recognition of two new alleles.Anim. Genet. 18181.

    PubMed  CAS  Article  Google Scholar 

  40. Patterson, S. D., and Bell, K. (1989). Application of an affinity electrophoretic andin situ oxidation method to the study of the equine protease inhibitory proteins.Electrophoresis 1040.

    Article  PubMed  CAS  Google Scholar 

  41. Patterson, S. D., and Bell, K. (1990). The carbohydrate side chains of the major plasma serpins of horse and wallaby: Analyses of enzymatic and chemically treated (including “Smith degradation”) protein blots by lectin binding.Biochem. Int. 20429.

    PubMed  CAS  Google Scholar 

  42. Patterson, S. D., Bell, K., and Poole, W. E. (1987). Tammar wallaby plasma protease inhibitory (Pi) proteins.Aust. J. Biol. Sci. 40 355.

    PubMed  CAS  Google Scholar 

  43. Patterson, S. D., Bell, K., and Shaw, D. C. (1989). Structural characterization including reactive site region of the major plasma serpins of horse and wallaby.J. Cell. Biochem. Suppl. 13C101.

    Google Scholar 

  44. Patterson, S. D., Bell, K., and Manton, V. J. A. (1990). Equus przewalskii plasma protease inhibitor (Pi) system.Anim. Genet. 21129.

    PubMed  CAS  Google Scholar 

  45. Patterson, S. D., Bell, K., and Shaw, D. C. (1991a). The Tammar wallaby major plasma serpin: Partial characterization including the sequence of the reactive site region.Comp. Biochem. Physiol. 98C359.

    Article  CAS  Google Scholar 

  46. Patterson, S. D., Bell, K., and Shaw, D. C. (1991b). Donkey and horse α1B-glycoprotein: Partial characterization and new alleles.Comp. Biochem. Physiol. 98B523.

    CAS  Google Scholar 

  47. Pellegrini, A., and von Fellenberg, R. (1980). Fractionation and partial characterization of α1-protease isoinhibitors of horse.Biochim. Biophys. Acta 6163511.

    Google Scholar 

  48. Pellegrini, A., Zweifel, H. R., and von Fellenberg, R. (1985). Horse α1 protease inhibitors: Relationship between the slow (s) and fast (f) isoforms.Int. J. Biochem. 17463.

    Article  PubMed  CAS  Google Scholar 

  49. Pellegrini, A., Hageli, G., and von Fellenberg, R. (1986). Resistance of horse α1-proteinase inhibitor to perchloric acid denaturation and a simplified purification procedure resulting therefrom.Biochim. Biophys. Acta 874144.

    PubMed  CAS  Google Scholar 

  50. Pemberton, P. A., Harrison, R. A., Lachmann, P. J., and Carrell, R. W. (1989). The structural basis for neutrophil inactivation of C1 inhibitor.Biochem. J. 258193.

    PubMed  CAS  Google Scholar 

  51. Pollitt, C. C., and Bell, K. (1980). Protease inhibitor system in horses: Classification and detection of a new allele.Anim. Blood Grps. Biochem. Genet. 11235.

    CAS  Google Scholar 

  52. Pollitt, C. C., and Bell, K. (1983a). Characterization of the α1-protease inhibitory system in Thoroughbred horse plasma by horizontal two-dimensional (ISO-DALT) electrophoresis. 1. Protein staining.Anim. Blood Grps. Biochem. Genet. 1483.

    CAS  Google Scholar 

  53. Pollitt, C. C., and Bell, K. (1983b). Characterization of the α1-protease inhibitor system in Thoroughbred horse plasma by horizontal two-dimensional (ISO-DALT) electrophoresis. 2. Protease inhibition.Anim. Blood Grps. Biochem. Genet. 14107.

    CAS  Google Scholar 

  54. Potempa, J., Watorek, W., and Travis, J. (1986). The inactivation of human plasma α1-proteinase inhibitor by proteinases fromStaphylococcus aureus.J. Biol. Chem. 26114330.

    PubMed  CAS  Google Scholar 

  55. Potempa, J., Wunderlich, J. K., and Travis, J. (1991). Comparative properties of three functionally different but structurally related serpin variants from horse plasma.Biochem. J. 274465.

    PubMed  CAS  Google Scholar 

  56. Putt, W., and Whitehouse, D. B. (1983). Genetics of four plasma protein loci in Equus przewalskii: New alleles at the prealbumin, postalbumin and transferrin loci.Anim. Blood Grps. Biochem. Genet. 147.

    CAS  Google Scholar 

  57. Saito, A., and Sinohara, H. (1988). Differential interactions of rabbit plasma α1-antiproteinases S and F with porcine trypsin.J. Biochem. 103247.

    PubMed  CAS  Google Scholar 

  58. Saito, A., and Sinohara, H. (1990). Amino acid sequence at the reactive site of rabbit α1-antiproteases.J. Biochem. 10880.

    PubMed  CAS  Google Scholar 

  59. Scott, A. M. (1977). Prealbumin: The single most useful system in Thoroughbred horse blood typing.Anim. Blood Grps. Biochem. Genet. 8 (Suppl. 1):19.

    Google Scholar 

  60. Stein, P. E., Leslie, A. G. W., Finch, J. T., Turnell, W. G., McLaughlin, P. J., and Carrell, R. W. (1990). Crystal structure of ovalbumin as a model for the reactive centre for serpins.Nature (London) 34799.

    Article  PubMed  CAS  Google Scholar 

  61. Stephens, A. W., Siddiqui, A., and Hirs, C. H. W. (1988). Site-directed mutagenesis of the reactive centre (serine 394) of antithrombin III.J. Biol. Chem. 26315849.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Scott D. Patterson.

Additional information

This work was supported by a grant from the Australian Stud Book, Alison Road, Randwick, New South Wales 2031, Australia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Patterson, S.D., Bell, K. & Shaw, D.C. The equine major plasma serpin multigene family: Partial characterization including sequence of the reactive-site regions. Biochem Genet 29, 477–499 (1991). https://doi.org/10.1007/BF02399689

Download citation

Key words

  • serpin
  • Equus caballus
  • two-dimensional electrophoresis
  • protein blotting
  • pulsed liquid phase sequencing