Biochemical Genetics

, Volume 26, Issue 9–10, pp 557–570 | Cite as

Mapping of mouse gamma crystallin genes on chromosome 1

  • Loren C. Skow
  • Maria E. Donner
  • Shu-Mei Huang
  • John M. Gardner
  • Benjamin A. Taylor
  • Wesley G. Beamer
  • Peter A. Lalley
Article

Abstract

Restriction fragments analysis of DNA from mouse-hamster somatic-cell hybrid clones revealed that a mouse gamma crystallin cDNA hybridized to genomic sequences located on mouse chromosome 1. Identification of restriction fragment length polymorphisms (RFLPs) in the gamma crystallin sequences of inbred strains of mice permitted the further localization of the gamma crystallin genes (Cryg) to the proximal region of chromosome 1 closely linked to the loci encoding isocitrate dehydrogenase (Idh-1), a low molecular weight (LM) crystallin protein polymorphism (Len-1), and fibronectin (Fn-1). A single recombinant was observed betweenLen-1 and an RFLP in the gamma crystallin gene family, consistent with the hypothesis thatLen-1 is one of the several structural loci encoding gamma crystallin genes.Len-1 is probably located on the centromeric end of theCryg gene family. Linkage ofIdh-1, Cryg, andFn-1 in mice extends the syntenic relationship of those loci to the human, bovine, and rodent genomes and may define a chromosomal region that is generally conserved among mammals. The map position ofCryg, near the eye lens obsolescence (Elo) locus, was confirmed by the discovery that the restriction fragment patterns of gamma crystallin sequences differed between strain C3H/HeJ and the congenic anophthalmic mutant strain, C3H.Elo. Therefore, the gamma crystallin genes were contransferred with the mutantElo gene in the derivation of C3H.Elo. The results establish that LEN-1 is a marker for the gamma crystallin gene family, position the gamma crystallin gene family relative to other markers on mouse chromosome 1, and provide additional evidence that theElo mutation is encoded at a locus closely linked to the gamma crystallin gene cluster. This study found no evidence of recombination hot spots within the gamma crystallin gene cluster.

Key words

mouse gamma crystallin gene mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkison, L. R., Skow, L. C., Thomas, T. L., Petresh, J. M., and Womack, J. E. (1987). Somatic cell mapping and restriction fragment analysis of bovine genes for fibronectin and gamma crystallinCytogenet Cell Genet 47155.CrossRefGoogle Scholar
  2. Bailey, D. W. (1971). Recombinant inbred strains. An aid to finding identity, linkage and function of histocompatibility and other genes.Transplantation 113254.Google Scholar
  3. Benoit, R., Barton, P., Minty, A., Daubas, P., Weydert, A., Bonhomme, F., Catalan, J., Chazottes, D., Guenet, J.-L., and Buckingham, M. (1985). Investigation of genetic linkage between myosin and ACT in genes using an interspecific mouse back-cross.Nature 314181.CrossRefGoogle Scholar
  4. Bradley, D. J., Taylor, B. A., Blackwell, J., Evans, E. P., and Freeman, J. (1979). Regulations of Leish-Mania populations within the hose. III. Mapping of the locus controlling susceptibility to visceral leishm analysis in the mouse.Clin. Exp. Immunol. 377.PubMedGoogle Scholar
  5. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.Biochemistry 185294.CrossRefPubMedGoogle Scholar
  6. den Dunnen, J. T., Moorman, R. J. M., Cremers, F. P. M., and Shoenmakers, J. G. G. (1985). Two human γ-crystallin genes are linked and riddled withAlu-repeats.Gene 38197.CrossRefGoogle Scholar
  7. den Dunnen, J. T., Moorman, R. J. M., Lubsen, N. H., and Schoenmakers, J. G. G. (1986). Concerted and divergent evolution within the rat γ-crystallin gene family.J. Mol. Biol. 18937.CrossRefGoogle Scholar
  8. Haldane, J. B. S., and Waddington, C. H. (1931). Inbreeding and linkage.Genetics 16357.PubMedGoogle Scholar
  9. Henry, I., Jeanpierre, M., Bernard, M., Weil, D., Grzschik, K. H., Ramirez, F., Chu, M. L., and Junien, C. (1985). The structural gene for fibronectin (FN) maps to 2p32.3-qter.Cytogenet. Cell. Genet. 40650.Google Scholar
  10. Holmes, R. S., Mather, P. B., and Duley, J. (1985). Gene markers for alcohol-metabolizing enzymes among recombinant inbred strains of mice with differential behavioral responses towards alcohol.Animal Blood Grps. Biochem. Genet. 1651.Google Scholar
  11. Kornblihtt, A. R., Vibe-Pedersen, K., and Baralle, F. E. (1984). Human fibronectin: Molecular cloning evidence for two mRNA species differing by an internal segment coding for a structural domain.EMBO J. 3221.PubMedGoogle Scholar
  12. Lalley, P. A., Francke, U., and Minna, J. D. (1982). Homologous genes for enolase, phosphogluconate dehydrogenase, phosphoglucomutase, and adenylate kinase are syntenic on mouse chromosome 4 and human chromosome 1p.Proc. Natl. Acad. Sci. USA 752382.Google Scholar
  13. Lok, S., Tsui, L.-C., Shinohara, T., Piatigorsky, J., God, R., and Breitman, M. (1984). Analysis of the mouse γ-crystallin gene family: Assignment of multiple cDNAs to discrete genomic sequences and characterization of a representative gene.Nucleic Acids Res 124517.PubMedGoogle Scholar
  14. Lubsen, N. H., Renwick, J. H., Tsui, L.-C., Breitman, M. L., and Schoenmakers, J. G. G. (1987). A locus for a human hereditary cataract is closely linked to the γ-crystallin gene family.Proc. Natl. Acad. Sci. USA 84489.PubMedGoogle Scholar
  15. Meakin, S., Breitman, M. L. and Tsui, L.-C. (1985). Structure and evolutionary relationships among five members of the human γ-crystallin family.Mol. Cell. Biol. 51408.PubMedGoogle Scholar
  16. Minna, J. D., Marshall, T. H., and Schaffer-German, P. V. (1975). Chinese hamster × mouse hybrid cells segregating mouse chromosomes and isozymes.Somat. Cell. Genet. 1335.CrossRefGoogle Scholar
  17. Moorman, R. J. M., Jongbloed, R., and Schoenmakers, J. G. G. (1984). Isolation and characterization of β- and γ-crystallin genes from rat genomic cosmid libraries.Gene 291.CrossRefGoogle Scholar
  18. Nadeau, J. H., and Taylor, B. A. (1984). Lengths of chromosomal segments conserved since divergence of man and mouse.Proc. Natl. Acad. Sci. USA 81814.PubMedGoogle Scholar
  19. Piatigorsky, J. (1984). Lens crystallins and their gene families.Cell 38620.CrossRefPubMedGoogle Scholar
  20. Popp, R. A., Lalley, P. A., Whitney, J. B., III, and Anderson, W. F. (1981). Mouse γ-globin genes and globin like pseudogenes are not syntenic.Proc. Natl. Acad. Sci. USA 786362.PubMedGoogle Scholar
  21. Prowse, K. R., Tricoli, J. V., Klebe, R. J., and Shows, T. B. (1986). Assignment of the human fibronectin structural gene to chromosome 2.Cytogenet. Cell. Genet. 4142.PubMedGoogle Scholar
  22. Quinlan, P., Oda, S.-I., Britman, M. L., and Tsui, L.-C. (1987). The mouse eyelens obsolescence (Elo) mutant: Studies on crystallin gene expression and linkage analysis between the mutant locus and the γ-crystallin genes.Genes Dev. 1637.PubMedGoogle Scholar
  23. Rigby, R. W. J., Dieckmann, M., Rhodes, C., and Berg, P. (1977). Labelling deoxyribonucleic acid to high specificity activityin vitro by nick translation with DNA polymerase 1.J. Mol. Biol. 113237.CrossRefPubMedGoogle Scholar
  24. Shiloh, Y., Donlon, T., Bruns, G., Breitman, M. L., and Tsui, L.-C. (1986). Assignment of the human γ-crystallin gene cluster (CRYG) to the long arm of chromosome 2, region q 33–36.Hum. Genet. 7317.CrossRefPubMedGoogle Scholar
  25. Shinohara, T., Robinson, E. A., Appella, E., and Piatigorsky, J. (1982). Multiple γ-crystallins of the mouse lens: Fractionation of mRNAs by cDNA cloning.Proc. Natl. Acad. Sci. USA 792783.PubMedGoogle Scholar
  26. Silver, J. (1985). Confidence limits for estimates of gene linkage based on analysis of recombinant inbred strains.J. Hered. 76436.PubMedGoogle Scholar
  27. Skow, L. C. (1982). Location of a gene controlling electrophoretic variation in mouse γ-crystallins.Exp. Eye Res. 34509.CrossRefPubMedGoogle Scholar
  28. Skow, L. C., Donner, M. E., Popp, R. A., and Bailiff, E. G. (1985). A second polymorphic lens crystallin (LEN-2) in the mouse: Genetic and biochemical analysis of LEN-1 and LEN-2.Biochem. Genet. 23181.CrossRefPubMedGoogle Scholar
  29. Skow, L. C., Adkison, L., Womack, J. E., Beamer, W. G., and Taylor, B. A. (1987). Mapping of the mouse fibronectin gene (Fn-1) to chromsome 1: Conservation of theIdh-1, Cryg, Fn-1 synteny group on mammals.Genomics 1283.CrossRefPubMedGoogle Scholar
  30. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol. 98503.PubMedGoogle Scholar
  31. Steinmetz, M., Stephan, D., and Lindahl, K. F. (1986). Gene organization and recombinational hotspots in the murine major histocompatibility complex.Cell 44895.CrossRefPubMedGoogle Scholar
  32. Taylor, B. A. (1978). Recombinant inbred strains: Use in gene mapping. In Morse, H. C. (ed.),Origins of Inbred Mice Academic Press, New York, pp. 423–438.Google Scholar
  33. Willard, H. F., Meakin, S. O., Tsui, L.-C., and Breitman, M. L. (1985). Assignment of human gamma crystallin multigene family to chromosome 2.Somat. Cell. Mol. Genet. 11511.CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Loren C. Skow
    • 1
  • Maria E. Donner
    • 2
  • Shu-Mei Huang
    • 2
  • John M. Gardner
    • 3
  • Benjamin A. Taylor
    • 3
  • Wesley G. Beamer
    • 3
  • Peter A. Lalley
    • 4
  1. 1.Department of Veterinary Anatomy, College of Veterinary MedicineTexas A&M UniversityCollege Station
  2. 2.Laboratory of GenetiesNational Institute of Environmental Health SciencesResearch Triangle Park
  3. 3.The Jackson LaboratoryBar Harbor
  4. 4.Institute for Medical ResearchBennington

Personalised recommendations