Advertisement

Biochemical Genetics

, Volume 23, Issue 9–10, pp 677–703 | Cite as

A coordinate relationship between theGALK and theTK1 genes of the Chinese hamster

  • Robert P. Wagner
  • Summers H. Cox
  • Robert C. Schoen
Article

Abstract

Chinese hamster cells in culture were treated with various concentrations of thymidine, 5-bromodeoxyuridine, trifluorothymidine, and 2-deoxy-d-galactose. Selection was made for deficiencies in the activities of galactokinase and thymidine kinase. Selection in the presence of thymidine, 5-bromodeoxyuridine, and trifluorothymidine was expected to produce clones deficient in thymidine kinase only, whereas those deficient in galactokinase were expected to be selected in the presence of 2-deoxy-d-galactose. However, it was found that clones growing in the presence of these inhibitors were frequently deficient in both enzymes. Or if a clone was deficient in only one, the deficiency frequently was not expected according to the selection procedure. This indicates some sort of coordinate relationship between the two gene loci,GALK andTK1, which specify galactokinase and thymidine kinase, respectively.GALK andTK1 are linked in all primates and rodents in which linkage determinations have been made. It is therefore probable that this linkage has been conserved for a long period of time. It is suggested that the apparent relationship between the two genes shown by the data presented here, as well as by others, supports the conclusion that linkage has been conserved by natural selection and is therefore not fortuitous.

Key words

Chinese hamster cells GALK TK1 thymidine kinase galactokinase conservation of linkage galactose metabolism thymidylate synthesis 5-bromodeoxyuridine thymidine trifluorothymidine 2-deoxy-d-galactose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berk, A. J., and Clayton, D. A. (1973). A genetically distinct thymidine kinase in mammalian mitodrondria.J. Biol. Chem. 2482722.PubMedGoogle Scholar
  2. Bick, M. D., and Davidson, R. L. (1974). Total substitution in bromedeoxyuridine for thymidine in the DNA of a bromodeoxyuridine-dependent cell line.Proc. Natl. Acad. Sci. 712082.PubMedGoogle Scholar
  3. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72248.CrossRefPubMedGoogle Scholar
  4. Bradley, W. E. C. (1979). Reversible inactivation of autosomal alleles in Chinese hamster cells.J. Cell. Physiol. 101325.CrossRefPubMedGoogle Scholar
  5. Bradley, W. E. C. (1983). Mutation at autosomal loci of Chinese hamster ovary cells: Involvement of a high-frequency event silencing two linked alleles.Mol. Cell. Biol. 31172.PubMedGoogle Scholar
  6. Bradley, W. E. C., Dinelle, C., Charron, J., and Langelier, Y. (1982). Bromodeoxyuridine resistance in CHO cells occurs in three discrete steps.Somat. Cell Genet. 8207.CrossRefPubMedGoogle Scholar
  7. Breitman, T. R. (1963). The feedback inhibition of thymidine kinase.Biochim. Biophys. Acta 67153.CrossRefPubMedGoogle Scholar
  8. Breslow, R. E., and Goldby, R. A. (1969). Isolation and characterization of thymidine transport mutants of Chinese hamster cells.Exp. Cell Res. 55339.CrossRefPubMedGoogle Scholar
  9. Campbell, C. E., and Worton, R. G. (1981). Segregation of recessive phenotypes in somatic cell hybrids: Role of mitotic recombination, gene inactivation, and chromosome nondisjunction.Mol. Cell. Biol. 1336.PubMedGoogle Scholar
  10. Carson, H. L. (1983). Chromosome sequences and interisland colonizations in Hawaiian Drosophila.Genetics 103465.Google Scholar
  11. Chan, T. S., Long, C., and Green H. (1975). A human-mouse somatic cell hybrid line selected for human deoxycytidine deaminase.Somat. Cell Genet. 181.CrossRefPubMedGoogle Scholar
  12. Cohn, R. M., and Segal, S. (1973). Galactose metabolism and its regulation.Metabolism 22627.CrossRefPubMedGoogle Scholar
  13. deSaint Buattin, R., and Buttin, G. (1979). Studies on 1-α-D-arabinofuranosyl cytosine-resistant mutants of Chinese hamster fibroblasts. III. Joint resistance to arabinofuranosyl cytosine and to excess thymidine—a semidominant manifestation of deoxycytidine triphosphate pool expansion.Somat. Cell Genet. 567.CrossRefGoogle Scholar
  14. Elsevier, S. M., Kucherlapati, R. S., Nichols, E. A., Creagan, R. P., Giles, R. E., Ruddle, F. H., Willecke, K., and McDougall, J. K. (1974). Assignment of the gene for galactokinase to human chromosome 17 and its regional localization to band of 21–22.Nature 251633.CrossRefPubMedGoogle Scholar
  15. Ericksson, S., Thelander, L., and Akerman, M. (1979). Allosteric regulation of calf thymus ribonucleoside diphosphate reductase.Biochemistry 182948.CrossRefGoogle Scholar
  16. Fox, M., and Boyle, J. M. (1976). Factors affecting the growth of Chinese hamster cells on HAT selection media.Mutat. Res. 35465.Google Scholar
  17. Friedman, T. S., Yarkin, R. J., and Merrill, C. R. (1975). Galactose and glucose metabolism in galactokinase deficient, galactose-1-P-uridyl transferase deficient and normal human fibroblasts.J. Cell. Physiol. 85569.CrossRefPubMedGoogle Scholar
  18. Giles, N. H. (1978). The organization, function and evolution of gene clusters in eucaryotes.Am. Nat. 112641.CrossRefGoogle Scholar
  19. Goldschmidt, R. B. (1940).The Material Basis of Evolution Yale University Press, New Haven, Conn. (Reprint, 1982).Google Scholar
  20. Goldschmidt, R. B. (1947). New facts on dependent, successive and conjugated spontaneous mutation.J. Exp. Zool. 104197.CrossRefGoogle Scholar
  21. Goss, S. (1979). Estimation of the spacing of the loci TK and GALK on human chromosome 17 by use of radiation-induced gene segregation.Cytogenet. Cell Genet. 25161.Google Scholar
  22. Harris, M. (1982). Induction of thymidine kinase in enzyme deficient Chinese hamster cells.Cell 29483.CrossRefPubMedGoogle Scholar
  23. Harris, M., and Collier, K. (1980). Phenotypic evolution of cells resistant to bromodeoxyuridine.Proc. Natl. Acad. Sci. 774206.PubMedGoogle Scholar
  24. Heisterkamp, N., Groffen, J., Stephenson, J. R., Spurr, N. K., Goodfellow, P. M., Solomon, E., Carritt, B., and Bodmer, W. F. (1982). Chromosome localization of human cellular homologs of two viral oncogenes.Nature 299747.CrossRefPubMedGoogle Scholar
  25. Jones, P. A. (1985). Altering gene expression with 5-azacytidine.Cell 40485.CrossRefPubMedGoogle Scholar
  26. Kahn, A., Vroclaus, M., Hakim, J., and Boivin, P. (1971). Differences in the two red-cell populations in erythroleukemia.Lancet 2933.CrossRefPubMedGoogle Scholar
  27. Kozak, C. A., and Ruddle, F. H. (1977). Assignment of the genes for thymidine kinase and galactokinase toMus musculus chromosome 11 and the preferential segregation of this chromosome in Chinese hamster/mouse somatic cell hybrids.Somat. Cell Genet. 3121.CrossRefPubMedGoogle Scholar
  28. Lawrence, P. A., and Morata, G. (1983). The elements of the bithorax complex.Cell 35595.CrossRefPubMedGoogle Scholar
  29. Marizot, D. C. (1983). Tracing linkage groups from fishes to mammals.J. Hered. 74413.Google Scholar
  30. McBreen, P., Orkrerszewski, K. G., Chern, C. J., Mellman, W. J., and Croce, C. M. (1971). Synteny of the genes for thymidine kinase and galactokinase in the mouse and their assignment to chromosome 11.Cytogenet. Cell Genet. 197.Google Scholar
  31. McBride, O. W., Burch, J. W., and Ruddle, F. H. (1978). Cotransfer of thymidine kinase and galactokinase genes by chromosome-mediated gene transfer.Proc. Natl. Acad. Sci. 75914.PubMedGoogle Scholar
  32. Mellman, W. J., Rawnsley, B. E., Nichols, C. W., Needleman, B., Mennuti, M. T., Malone, J., and Tedesco, T. A. (1975). Galactose tolerance of mutant individuals with reduced galactose pathway activity.Am. J. Hum. Genet. 27748.PubMedGoogle Scholar
  33. Meuth, M., and Green, H. (1974). Induction of deoxycytidrueless state in cultured mammalian cells by bromodeoxyuridine.Cell 2109.CrossRefPubMedGoogle Scholar
  34. Nadeau, J. H., and Taylor, B. A. (1984). The lengths of chromosomal segments conserved since divergence of man and mouse.Proc. Natl. Acad. Sci. 81814.PubMedGoogle Scholar
  35. Ohno, S. (1984). In Sharma, A. K., and Sharma, A. (eds.),Conservation of Linkage Relationships Between Genes as the Underlying Theme of Karyological Evolution in Mammals in Chromosomes in Evolution of Eukaryotic Groups, Vol. II, CRC Press, Boca Raton, Fla.Google Scholar
  36. Orkwiszenski, K. G., Tedesco, T. A., Mellman, W. J., and Croce, C. M. (1976). Linkage relationship between the genes for thymidine kinase and galactokinase in different primates.Somat. Cell Genet. 221.CrossRefGoogle Scholar
  37. Patterson, J. T., and Stone, W. S. (1952).Evolution in the Genus, Drosophila Macmillan, New York.Google Scholar
  38. Puck, T. T. (1964). Studies of the life cycle of mammalian cells.Cold Spring Harbor Symp. Quant. Biol. 29167.PubMedGoogle Scholar
  39. Race, R. R., and Sanger, R. (1975).Blood Groups in Man 6th ed., Blackwell Scientific, Oxford. p. 659.Google Scholar
  40. Rawls, J. M., and Fristrom, J. W. (1975). A complex locus that controls the first three steps of pyrimidine biosynthesis in Drosophila.Nature 255738.CrossRefPubMedGoogle Scholar
  41. Scott, M. P., Weiner, A. J., Hazelrigg, T. I., Polisky, B. A., Pirrotta, V., Scalenghe, F., and Kaufman, T. C. (1983). The molecular organization of the antennapedia locus of Drosophila.Cell 35763.CrossRefPubMedGoogle Scholar
  42. Schoen, R. C., Cox, S. H., and Wagner, R. P. (1984). Thymidine kinase activity of cultured cells from individuals with inherited galactokinase deficiency.Am J. Hum. Genet. 36815.PubMedGoogle Scholar
  43. Segal, S., and Rogers, S. (1971). Nucleotide inhibition of mammalian liver galactose-1-phosphate uridyl transferase.Biochim. Biophys. Acta 250351.PubMedGoogle Scholar
  44. Smith, D. F., and Keppler, D. O. R. (1977). 2-Deoxy-D-galactose metabolism in ascites hepatoma cells results in phosphate trapping and glycolysis inhibition.Env. J. Biochem. 7383.CrossRefGoogle Scholar
  45. Stallings, R. L., and Siciliano, M. J. (1981). Conformational, provisional and/or regional assignment of 15 enzyme loci onto Chinese hamster autosomes 1, 2, and 7.Somat. Cell Genet. 7683.CrossRefPubMedGoogle Scholar
  46. Starling, J. J., and Keppler, D. O. R. (1977). Metabolism of 2-deoxy-D-galactose in liver induces phosphate and uridylate trapping.Eur. J. Biochem. 80373.CrossRefPubMedGoogle Scholar
  47. Sturtevant, A. H., and Novitski, E. (1941). The homologies of the chromosome elements in the genus Drosophila.Genetics 26517.Google Scholar
  48. Taylor, A. T., Stafford, M. A., and Jones, O. W. (1972). Properties of thymidine kinase partially purified from human fetal and adult tissue.J. Biol. Chem. 2471930.PubMedGoogle Scholar
  49. Templeton, A. R., Sing, C. F., and Borkaw, B. (1976). The unit of selection inDrosophila mercatorum. I. The interaction of selection and meiosis in parthenogenetic strains.Genetics 82349.PubMedGoogle Scholar
  50. Thirion, J. P., Banville, D., and Noel, H. (1976). Galactokinase mutants of Chinese hamster somatic cells resistant to 2-deoxygalactose.Genetics 83137.PubMedGoogle Scholar
  51. Whitfield, C. D., Buchsbaum, B., Bostedor, R., and Chu, E. H. Y. (1978). Inverse relationship between galactokinase activity and 2-deoxygalactose resistance in Chinese hamster ovary cells.Somat. Cell Genet. 4699.CrossRefPubMedGoogle Scholar
  52. Xeros, N. (1962). Deoxyriboside control and synchronization of mitosis.Nature 194682.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Robert P. Wagner
    • 1
  • Summers H. Cox
    • 1
  • Robert C. Schoen
    • 1
  1. 1.Life Sciences Division, LS-3, Genetics Group, MS M886Los Alamos National LaboratoryLos Alamos

Personalised recommendations