Theoretica chimica acta

, Volume 64, Issue 6, pp 439–451 | Cite as

Chemical applications of topology and group theory

15. Representations of polyhedral isomerizations using gale diagrams
  • R. Bruce King
Original Investigations


Polyhedral isomerizations of the typeP 1P 2P 3 are degenerate ifP 1 is combinatorically equivalent toP 3 and planar ifP 2 is a planar polygon. This paper systematizes degenerate non-planar isomerizations of 5- and 6-vertex polyhedra by using their Gale diagrams which are 1- and 2-dimensional, respectively. Using this method, it is trivial to show that all degenerate non-planar isomerizations of 5-vertex polyhedra can be formulated as sequences of Berry pseudorotation processes, i.e. the prototypical diamond-squarediamond (dsd) process. The Gale diagrams of the 7 combinatorically distinct 6-vertex polyhedra consist necessarily of points on the circumference of the unit circle as well as the center in the case of the pentagonal pyramid. Study of allowed motions of these points along the circumference of the unit circle in these Gale diagrams reveal 6 different types of single or multiple parallel dsd processes or closely related dsd′ or sds processes connecting these 7 combinatorically distinct 6-vertex polyhedra. In addition, a study of allowed motions of the points on the circumference of the Gale diagrams of the 6-vertex polyhedra through the center reveal 2 additional degenerate nonplanar isomerization processes of 6-vertex polyhedra which involve pentagonal pyramid intermediates.

Key words

Topology Gale diagrams Polyhedral isomerizations Diamond-square-diamond processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    King, R. B.: Theor. Chim. Acta (Berl.)63, 323 (1983)CrossRefGoogle Scholar
  2. 2.
    Muetterties, E. L.: J. Am. Chem. Soc.91, 1636 (1969)CrossRefGoogle Scholar
  3. 3.
    Brocas, J.: Top. Curr. Chem.32, 43 (1972)Google Scholar
  4. 4.
    Muetterties, E. L.: J. Am. Chem. Soc.90, 5097 (1968)CrossRefGoogle Scholar
  5. 5.
    King, R. B.: Theor. Chim. Acta (Berl.)59, 25 (1981)CrossRefGoogle Scholar
  6. 6.
    Klemperer, W. G.: J. Am. Chem. Soc.94, 6940 (1972)CrossRefGoogle Scholar
  7. 7.
    Lipscomb, W. N.: Science153, 373 (1966)Google Scholar
  8. 8.
    King, R. B.: Inorg. Chim. Acta49, 237 (1981)CrossRefGoogle Scholar
  9. 9.
    Federico, P. J.: Geom. Ded.3, 469 (1975)Google Scholar
  10. 10.
    Grünbaum, B.: Convex polytopes. New York: Interscience 1967Google Scholar
  11. 11.
    King, R. B.: J. Am. Chem. Soc.91, 7211 (1969)CrossRefGoogle Scholar
  12. 12.
    King, R. B.: Inorg. Chem.20, 363 (1981)CrossRefGoogle Scholar
  13. 13.
    King, R. B.: Theor. Chim. Acta (Berl.)63, 103 (1983)CrossRefGoogle Scholar
  14. 14.
    Berry, R. S.: J. Chem. Phys.32, 933 (1960)CrossRefGoogle Scholar
  15. 15.
    Holmes, R. R.: Accts. Chem. Res.5, 296 (1972)CrossRefGoogle Scholar
  16. 16.
    McMullen, P., Shephard, G. C.: Mathematika15, 123 (1968)CrossRefGoogle Scholar
  17. 17.
    McMullen, P., Shephard, G. C.: Convex polytopes and the upper bound conjecture. Cambridge: Cambridge University Press 1971Google Scholar
  18. 18.
    Bailar, J. C., Jr.: J. Inorg. Nucl. Chem.8, 165 (1958)CrossRefGoogle Scholar
  19. 19.
    Ray, P., Dutt, N. K.: J. Inorg. Nucl. Chem. Soc.20, 81 (1943)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • R. Bruce King
    • 1
  1. 1.Department of ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations