Advertisement

Theoretica chimica acta

, Volume 48, Issue 2, pp 143–153 | Cite as

A quantum-mechanical study of the interaction of glyoxal with guanine

  • Daniel Demoulin
  • Anne-Marie Armbruster
  • Bernard Pullman
Original Investigations

Abstract

A quantum molecular study by the SCFab initio method of the interaction of glyoxal with guanine provides for the formation of a stable covalent adduct in which the glyoxal fragment forms a complementary cyclic ring attached to the imino N1 and amino N2 atoms of guanine with the concomitant migration of the N-bonded H atoms to the oxygens of glyoxal. The reaction should proceed in two steps. The most plausible mechanism involves as the first step the interaction of a carbonyl group of glyoxal with the amino group of guanine followed by a similar interaction at the imino group of guanine, rather than the reverse order of interactions. The respective energy barriers are 49.7 and 63.9 kcal/mole. The intermediate product is also more stable when the adduct occurs first at N2:30.7 kcal/mole versus 17.9 kcal/mole for the adduct at N1.

Key words

Glyoxal, interaction of ∼ with guanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Staehlin, M.: Biochim. Biophys. Acta31, 448 (1959)CrossRefGoogle Scholar
  2. 2.
    Litt, M.: Biochem.10, 2223 (1971)CrossRefGoogle Scholar
  3. 3.
    Broude, N. E., Budowsky, E. I.: Biochim. Biophys. Acta254, 380 (1971)Google Scholar
  4. 4.
    Broude, N. E., Budowsky, E. I.: Biochim. Biophys. Acta294, 378 (1973)Google Scholar
  5. 5.
    Szent-Gyorgyi, A., Együd, L. G., McLaughlin, J. A.: Science155, 539 (1967)Google Scholar
  6. 6.
    Szent-Gyorgyi: Proc. Natl. Acad. Sci. USA74, 2844 (1977)Google Scholar
  7. 7.
    Szent-Gyorgyi, A.: in: Search and discovery, Kaminer, B. Ed., p. 329. New York: Academic Press 1977Google Scholar
  8. 8.
    Shapiro, R., Hachmann, J.: Biochem.5, 2799 (1966)CrossRefGoogle Scholar
  9. 9.
    Shapiro, R., Cohen, B. I., Shiney, S.-J., Maurer, H.: Biochem.8, 328 (1969)Google Scholar
  10. 10.
    Shapiro, R.: Progr. Nucleic Acid Res. Mol. Biol.8, 73 (1968)CrossRefGoogle Scholar
  11. 11.
    McGhee, J. D., Von Hippel, P. H.: Biochem.14, 1281 (1975)CrossRefGoogle Scholar
  12. 12.
    Hehre, W. J., Lathan, W. A., Ditchfield, R., Newton, M. D., Pople, J. A.: Gaussian 70, Quantum Chemistry Program Exchange, Indiana University (1973)Google Scholar
  13. 13.
    Arnott, S.: Progr. Biophys. Mol. Biol.21, 265 (1970)CrossRefGoogle Scholar
  14. 14.
    Kuchitsu, K., Fukuyama, T., Morino, Y.: J. Mol. Struct.4, 41 (1969)CrossRefGoogle Scholar
  15. 15.
    Jencks, W. P.: Progr. Phys. Org. Chem.2, 63 (1964)Google Scholar
  16. 16.
    Bürgi, H. B., Dunitz, J. D., Lehn, J. M., Wipff, G.: Tetrahedron30, 1563 (1974)CrossRefGoogle Scholar
  17. 17.
    Bürgi, H. B.: Angew. Chem. Intern. Ed.14, 460 (1975)CrossRefGoogle Scholar
  18. 18.
    Bürgi, H. B., Lehn, J. M., Wipff, G.: J. Am. Chem. Soc.96, 1956 (1974)CrossRefGoogle Scholar
  19. 19.
    Scheiner, S., Lipscomb, W. N., Kleier, D. A.: J. Am. Chem. Soc.98, 4770 (1976)CrossRefGoogle Scholar
  20. 20.
    Alagona, G., Scrocco, E., Tomasi, J.: J. Am. Chem. Soc.97, 6976 (1975)CrossRefGoogle Scholar
  21. 21.
    Jönsson, B., Karlström, G., Wennerström, H., Forsén, S., Roos, B., Almlöf, J.: J. Am. Chem. Soc.99, 4628 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Daniel Demoulin
    • 1
  • Anne-Marie Armbruster
    • 1
  • Bernard Pullman
    • 1
  1. 1.Institut de Biologie Physico-ChimiqueNational Foundation for Cancer Research, Regional WorkshopParisFrance

Personalised recommendations