Skip to main content
Log in

Mössbauer studies of magnetic behavior of 3d-doped REBa2Cu3−x Fe x O7+δ (RE=Y, Er, Dy, Gd)

  • High Temperature Superconductivity
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

A Mössbauer study has been made on57Fe ions substituted into the Cu(1) site of REBa2Cu3−x Fe x O7+δ (RE=Y, Er, Dy, Gd;x=0.15, 0.30). At low temperature, the iron atoms antiferromagnetically order with a transition temperature which is dependent on the Fe concentration. The temperature dependence of the magnetic subspectra representing Fe ions with various local oxygen environments in YBa2Cu3−x Fe x O7+δ and ErBa2Cu3−x Fe x O7+δ fit a 2D-Ising model with a ratio of the anisotropic exchange between the two directions on the order of 0.5–1.0(10−3) for the Y-compounds and on the order of 1 for the Er-compounds. The magnitude of the local dopant magnetization is related to a short-range chemical order which determines the magnetic chain size and defines the correlation lengths. For the Y-compound, the order is quasi-1D with strong intrachain but very weak interchain coupling. For the Er-compounds, the magnetic coupling is Ising 2D. The strong fluctuation behavior expected in low dimensional systems above and belowT N is observed via characteristic relaxation in the Mössbauer linewidth nearT N. For both the Dy- and Gd-compounds, the magnetic order is 3D. The magnitude of the rare-earth magnetic moments appears to affect the character of the magnetic interaction in the Cu(1)-site. However, a Mössbauer effect measurement at155Gd nuclei in GdBa2Cu2.85Fe0.15O7+δ (T N(Fe)∼14 K) shows paramagnetic behavior at 4.9 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Fisk, J.D. Thompson, E. Zirngiebl J.L. Smith and S.W. Cheong, Sol. Stat. Commun. 62(1987)743; D.W. Murphy, R.B. Van Dove, R.J. Cava, B. Batlogg and S.M. Zahurak, Phys. Rev. Lett. 58(1987)1888; P.H. Hor, R.L. Meng, Y.Q. Wang, L. Gao, Z.J. Huang, J. Bechtold, K. Forster and C.W. Chu, Phys. Rev. Lett. 58(1987)1891.

    Article  Google Scholar 

  2. B.D. Dunlap, M.V. Nevitt, M. Slaski, T.E. Klippert, Z. Sungaila, A.G. McKale, D.W. Capone, R.B. Poeppel and B.K. Flandermeyer, Phys. Rev. B35(1987) 7210.

    Article  ADS  Google Scholar 

  3. J.W. Lynn, T.W. Clinton, W.-H. Li, R.W. Erwin, J.Z. Lui, K. Vanderwoort and R.N. Shelton, Phys. Rev. Lett. 63(1989)2602; S. Simizu, G.H. Bellesis, J. Lukin, S.A. Friedberg, H.S. Lessure, S.M. Five and M. Greenblatt, Phys. Rev. B39(1989)9099.

    Article  ADS  Google Scholar 

  4. M.A. Beno, L. Soderholm, D.W. Capone II, D.G. Hinks, J.D. Jorgensen, J.D. Grace, I.K. Schuller, C.U. Segre and K. Zhang, Appl. Phys. Lett. 51(1987)57; R.J. Cava, B. Batlogg, A.P. Ramirez, D. Werder, C.H. Chen, E.A. Rietman and S.M. Zahurak, Mat. Res. Soc. Symp. Proc. 99(1988)19; J.J. Capponi, C. Chaillout, A.W. Hewat, P. Lejay, M. Marezio, N. Nguyen, B. Raveau, J.L. Soubeyroux, J.L. Tholence and R. Tourier, Europhys. Lett. 3(1987)1301.

    Article  ADS  Google Scholar 

  5. Y. Maeno, T. Nojima, Y. Aoki, M. Kato, K. Hoshino, A. Minami and T. Fujita, Jpn. J. Appl. Phys. 26(1987)L774.

    Article  Google Scholar 

  6. J.M. Tarascon, P. Barbous, P.F. Micelli, L.H. Greene, G.W. Hull, M. Eibschutz and S.A. Sunshine, Phys. Rev. B37(1988)7458.

    Article  ADS  Google Scholar 

  7. B.D. Dunlap, J.D. Jorgensen, C. Segre, A.E. Dwight, J.L. Matykiewicz, H. Lee, W. Peng and C.W. Kimball, Physica C158(1989)397–405.

    Article  ADS  Google Scholar 

  8. J.A. Hodges, P. Imbert, J.B. Marimon da Cunha and J.P. Sanchez, Physica C160(1989) 49; J.A. Hodges, J.P. Imbert, J.B. Marimon da Cunha, J. Hammann, E. Vincent and J.P. Sanchez, Physica C156(1988)143; D.T. Liu, Physica C159(1989)188.

    Article  ADS  Google Scholar 

  9. H.J. Bornemann, R. Kimec, G. Czjzek, P. Adelmann and A. Seidel, Physics C, to be published.

  10. J.W. Lynn and W.-HJ. Li, J. Appl. Phys. 64(1988)6065.

    Article  ADS  Google Scholar 

  11. M.B. Maple, Mat. Res. Bull. (1991); J.W. Lynn (ed.),High Temperature Superconductors (Springer-Verlag, New York, 1989); S.K. Sinha, Nat. Res. Bull. 24(1988).

  12. P. Boolchand and D. McDaniel,Studies in High Temperature Superconductivity, Vol. 4 (Nova, 1990), p. 157.

    Google Scholar 

  13. M. Francois, A. Junod, K. Yvon, A.W. Hewat, J.J. Capponi, P. Strobel, M. Marezio and P. Fischer, Sol. Stat. Commun. 66(1988)1117.

    Article  Google Scholar 

  14. Z. Hiroi and M. Takano, Sol. Stat. Commun. 65(1989)1549; Z. Hiroi, M. Takano, Y. Takeda, R. Kanno and Y. Bando, J., Appl. Phys. 27(1988)L580; P. Bordet, J.L. Hodeau P. Strobel, M. Narezio and A. Santoro, Sol. Stat. Commun. 66(1988)435.

    Article  Google Scholar 

  15. Weimin Peng, C.W. Kimball and B.D. Dunlap, Physica C169(1990)23; Yuehai Liang et al., Physica C, to be published.

    Article  ADS  Google Scholar 

  16. J. Chadwick, M.F. Thomas, C.E. Johnson and D.H. Jones, J. Phys. C21(1988)L580.

    Article  Google Scholar 

  17. H.J.M. de Groot, L.J. de Jongh, M. Elmassalami, H.H.A. Smet and R.C. Thiel, Hyp. Int. 27(1986)93; M.W. Dirkin, R.C. Thiel, H.H.A. Smit and H.W. Zandbergen, Physica C156(1988)303; M. Elmassalami, H.H.A. Smit, R.C. Thiel and L.J. de Jongh, Physica B154(1989)267.

    Article  Google Scholar 

  18. L. Onsager, Phys. Rev. 65(1944)117.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. M. Steiner, J. Villain and C.G. Windsor, Adv. Phys. 25(1976)87.

    Article  ADS  Google Scholar 

  20. E.E. Alp, L. Soderholm, G.K. Shenoy, D.G. Hinks, D.W. Capone II, K. Zhang and B.D. Dunlap, Phys. Rev. B36(1987)8910.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimball, C.W., Dabrowski, B., Liang, Y. et al. Mössbauer studies of magnetic behavior of 3d-doped REBa2Cu3−x Fe x O7+δ (RE=Y, Er, Dy, Gd). Hyperfine Interact 72, 153–172 (1992). https://doi.org/10.1007/BF02398862

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02398862

Keywords

Navigation