Advertisement

Hyperfine Interactions

, Volume 46, Issue 1–4, pp 429–436 | Cite as

Mechanism of formation of magnetite from ferrous hydroxide in aqueous corrosion processes

  • A. A. Olowe
  • D. Rezel
  • J. M. R. Génin
Corrosion

Abstract

The stoichiometric conditions for the formation of ferrous hydroxide Fe(OH)2, by mixing Fe2+ ions with caustic soda NaOH, leads by oxidation to magnetite, irrelevant of the foreign anions, e.g. Cl or SO42−, as demonstrated from Mössbauer spectroscopy. The electrochemical potential Eh and pH value of the initial conditions correspond to the drastic change from basic to acidic medium, observed when varying the initial Fe2+/OH ratio. Mössbauer analysis of the end products of oxidation at various temperatures shows that magnetite is only obtained at stoichiometry at very low temperature, but extends off stoichiometry at higher temperatures. The mechanism of formation of magnetite through an intermediate compound is discussed.

Keywords

Oxidation Thin Film Hydroxide Magnetite SO42 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    A.A. Olowe, J.M.R. Génin and Ph. Bauer, Hyperfine Interactions, 41(1988)501–4.Google Scholar
  2. /2/.
    J.M.R. Génin, D. Rezel, Ph. Bauer, A. Olowe and A. Beral, Proc. Electrochemical Methods in Corrosion Research, Materials Science Forum, ed. G.E. Murch, 8(1986)477–90.Google Scholar
  3. /3/.
    A.A. Olowe and J.M.R. Génin, “Influence of temperature and the initial ratio of reactants on the formation of rusts in sulphated aqueous media”, this issue.Google Scholar
  4. /4/.
    D. Rezel, Ph. Bauer and J.M.R. Génin, Hyperfine Interactions, 42(1988)1075–78.Google Scholar
  5. /5/.
    J.D. Bernal, D.R. Dasgupta and A.L. Mackay, Clay Minerals Bull., 4(1959)15–30.Google Scholar
  6. /6/.
    S.K. Banerjee, W.O. Reilly and C.E. Johnson, J. Appl. Phys., 38(1967)1289.CrossRefGoogle Scholar
  7. /7/.
    J.M.D. Coey, A.H. Morrish and Sawatsky, J. Phys. 32(1971)C1–271.Google Scholar
  8. /8/.
    Y. Tamaura, C. Kameshima and T. Katsura, J. Electrochem. Soc., 128(1981), 1447–51.Google Scholar
  9. /9/.
    M. Kiyama, Bull. Chem. Soc. Jpn., 47(1974)1646.Google Scholar
  10. /10/.
    J.E.O. Mayne, J. Chem. Soc., (1963)129–32.Google Scholar
  11. /11/.
    J.E. Hiller, Werkat. Korro., 11(1966)943.CrossRefGoogle Scholar
  12. /12/.
    H. Schwartz, Werkat. Korro., 23(1972)648.CrossRefGoogle Scholar
  13. /13/.
    A. Girard and G. Chaudron, Comptes rendus, Ac. Sc., 200(1935)127–29.Google Scholar
  14. /14/.
    T. Misawa, K. Hashimoto, S. Shimodaira, Corr. Sci., 14(1974)131–49.CrossRefGoogle Scholar
  15. /15/.
    A.L. Mackay, “Proc. of 4th International Symposium on Reactivity of Solids”, ed. De Boer, (1961)571.Google Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1989

Authors and Affiliations

  • A. A. Olowe
    • 1
  • D. Rezel
    • 1
  • J. M. R. Génin
    • 1
  1. 1.L.S.M. Département Sciences des Matériaux, ESSTIN, Parc R. BentzUniversité de Nancy IVandoeuvre-NancyFrance

Personalised recommendations