Advertisement

Hyperfine Interactions

, Volume 67, Issue 1–4, pp 711–715 | Cite as

Program for the analysis of pulse height spectra and the background from a proportional detector

  • Hector Flores-Llamas
  • Hernani Yee-Madeira
  • Gerardo Contreras-Puente
  • Rafael Zamorano-Ulloa
Methodology, Instrumentation and New Developments

Abstract

A PC-Fortran program is presented for fitting of lineshapes and the analysis of pulse height spectra obtainable with proportional detectors. The common fitting and analysis of pulse height spectra by means of mixed Gaussian lineshapes is readily improved by using Voigt lineshapes. In addition, the background can be evaluated during the fitting process without the need of extra measurements.

As an application of the program, a pulse height transmission spectrum accumulated with a static57Co source and detected with an argon-metane proportional detector, was least squares fitted to an elaborated complex trial lineshape function containing two Voigt lines plus a straight line. The fitting straight line parametersa andb characterize quantitatively the background. The very good PC-fitting obtained shows that the fitting of experimental spectra with the more realistic Voigt lineshapes is no longer a formidable task and that it is possible to evaluate and subtract the background inherent to the experiment during the fitting process.

Keywords

Thin Film Transmission Spectrum Experimental Spectrum Pulse Height Formidable Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.L. Roberts, R.A. Riddle and G.T. Squier, Nucl. Instr. and Meth. 130 (1975) 559.CrossRefADSGoogle Scholar
  2. [2]
    D.C. Robinson, Nucl. Instr. and Meth. 78 (1970) 120.CrossRefADSGoogle Scholar
  3. [3]
    J.L. Campbell et al., Nucl. Instr. and Meth. B43 (1989) 490.ADSCrossRefGoogle Scholar
  4. [4]
    C.J. Batty, S.D. Hoath and B.L. Roberts, Nucl. Instr. and Meth. in Phys. 137 (1976) 179.CrossRefADSGoogle Scholar
  5. [5]
    D.W. Posener, Aust. J. Phys. 12 (1957) 184.ADSGoogle Scholar
  6. [6]
    P. Heinzel, Bull. Astron. Inst. Czechosl., 29 (1978) 159.ADSzbMATHGoogle Scholar
  7. [7]
    F. Matta and A. Reichel, Math. Comp., 25 (1971) 339.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. Flores-Llamas, Depto. de Física ININ. México Reporte Técnico Julio (1990).Google Scholar
  9. [9]
    J. Muñoz, Rev. Real Academia de Ciencias (Spain) 75 (1981) 385–399.Google Scholar
  10. [10]
    D.A. O'Connor and N.M. Butt, Phys. Lett. 7 (1963) 233.ADSCrossRefGoogle Scholar
  11. [11]
    C. Ghezzi, A. Merlini and S. Pace, Phys. Rev. B 8 (1973) 1315.CrossRefGoogle Scholar
  12. [12]
    J.G. Mullen and J.R. Stevenson, AIP Conf. Proc. 38 (1977) 55.CrossRefADSGoogle Scholar
  13. [13]
    Yu F. Babikova et al., Instr. and Exp, Techniques 260 (1983) 783.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1991

Authors and Affiliations

  • Hector Flores-Llamas
    • 1
  • Hernani Yee-Madeira
    • 2
  • Gerardo Contreras-Puente
    • 2
  • Rafael Zamorano-Ulloa
    • 2
  1. 1.Instituto Nacional de Investigaciones NuclearesMéxico
  2. 2.Departamento de Física, Escuela Superior de Física y Matemáticas Instituto Politécnico NacionalUnidad Adolfo López MateosMéxico

Personalised recommendations