Hyperfine Interactions

, Volume 62, Issue 4, pp 283–300 | Cite as

PAC analysis of defect motion by Blume's stochastic model forI=5/2 electric quadrupole interactions

  • William E. Evenson
  • John A. Gardner
  • Ruiping Wang
  • Han-Tzong Su
  • Alex G. McKale


Using Blume's stochastic model and the approach of Winkler and Gerdau, we have computed time-dependent effects on perturbed angular correlation (PAC) spectra due to defect motion in solids in the case ofI=5/2 electric quadrupole interactions. We report detailed analysis for a family of simple models: “XYZ+Z” models, in which the symmetry axis of an axial EFG is allowed to fluctuate among orientations alongx, y, andz axes, and a static axial EFG oriented along thez axis is added to the fluctuating EFGs. When the static EFG is zero, this model is termed the “XYZ” model. Approximate forms are given forG2(t) in the slow and rapid fluctuation regimes, i.e. suitable for the low and high temperature regions, respectively. Where they adequately reflect the underlying physical processes, these expressions allow one to fit PAC data for a wide range of temperatures and dopant concentrations to a single model, thus increasing the uniqueness of the interpretation of the defect properties. Application of the models is illustrated with data from a PAC study of tetragonal zirconia.


Zirconia Stochastic Model Symmetry Axis Dopant Concentration Angular Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Blume, Phys. Rev. 174(1968)351.CrossRefADSGoogle Scholar
  2. [2]
    H. Winkler and E. Gerdau, Z. Phy. 262(1973)363.CrossRefGoogle Scholar
  3. [3]
    A. Baudry and P. Boyer, Hyp. Int. 35(1987)803.Google Scholar
  4. [4]
    A. Abragam and R.V. Pound, Phys. Rev. 92(1953)943.CrossRefADSGoogle Scholar
  5. [5]
    A.G. Marshall and C.F. Meares, J. Chem. Phys. 56(1972)1226.CrossRefGoogle Scholar
  6. [6]
    P. da R. Andrade, J.D. Rogers and A. Vasquez, Phys. Rev. 188(1969)571.CrossRefADSGoogle Scholar
  7. [7]
    W.E. Evenson, A.G. McKale, H.T. Su and J.A. Gardner, Hyp. Int. 61(1990)1379.Google Scholar
  8. [8]
    T. Butz, Hyp. Int. 52(1989)189.Google Scholar
  9. [9]
    B.T. Smith,Matrix Eigensystem Routines—EISPACK Guide, Lecture Notes in Computer Science, Vol. 6 (Springer-Verlag, 1974).Google Scholar
  10. [10]
    W.E. Evenson and J.A. Gardner, in preparation, to be submitted to Phys. Rev. B (1991).Google Scholar
  11. [11]
    H.-T. Su, R. Wang, H. Fuchs, J.A. Gardner, W.E. Evenson and J.A. Sommers, J. Amer. Ceram. Soc. 73(1990)3215.CrossRefGoogle Scholar
  12. [12]
    H.-T. Su, R. Lundquist, J.A. Gardner, W.E. Evenson and J.A. Sommers, in preparation, to be submitted to Phys. Rev. B (1991).Google Scholar
  13. [13]
    D. Dillenburg and Th.A.J. Maris, Nucl. Phys. 33(1962)208.CrossRefGoogle Scholar

Copyright information

© J.C. Baltzer AG, Scientific Publishing Company 1990

Authors and Affiliations

  • William E. Evenson
    • 1
  • John A. Gardner
    • 2
  • Ruiping Wang
    • 2
  • Han-Tzong Su
    • 3
  • Alex G. McKale
    • 4
  1. 1.Department of Physics and AstronomyBrigham Young UniversityProvoUSA
  2. 2.Department of PhysicsOregon State UniversityCorvallisUSA
  3. 3.Department of PhysicsNational Cheng Kung UniversityTainanROC, Taiwan
  4. 4.Computer Curriculum CorporationSunnyvaleUSA

Personalised recommendations