Advertisement

Hyperfine Interactions

, Volume 55, Issue 1–4, pp 1093–1097 | Cite as

Local iron symmetry in quasicrystals

  • R. D. Werkman
  • I. Vincze
  • P. J. Schurer
  • F. van der Woude
Non-crystalline Materials

Abstract

Iron sites in quasicrystalline Al(TFe)-alloys have been investigated with Mössbauer spectroscopy. The quadrupole splitting of these materials is about 0.4 mm/s, showing that the iron atom is not in an icosahedral\((m\bar 3\bar 5)\) site. A measurement in an external magnetic field ofHext≈5 T yields the asymmetry parameter η=(V xx −V yy )/V zz . The value of η enables one to decide between the applicability of some mathematical structure models of quasicrystals.

The results are:

η=0.8 for decagonal Al7(Mn0.7Fe0.3)2

η=0.9 for icosahedral Al6Cr0.7Fe0.3

using an one site approximation. This means that the iron atoms are in sites with a symmetry lower than axially symmetry, which suits very well for a Penrose lattice.

Keywords

Iron Spectroscopy Magnetic Field Thin Film External Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.J. Schurer, B. Koopmans and F. van der Woude, Phys. Rev. B37 (1988) 507.CrossRefADSGoogle Scholar
  2. [2]
    B. Koopmans, P.J. Schurer, F. van der Woude and P. Bronsveld, Phys. Rev. 35 (1987) 3005.CrossRefADSGoogle Scholar
  3. [3]
    For a review, see:The Physics of Quasicrystals, eds P.J. Steinhardt and S. Ostlund (World Scientific, Singapore, 1988).Google Scholar
  4. [4]
    V. Elser, Phys. Rev. B32 (1985) 4892.CrossRefADSGoogle Scholar
  5. [5]
    N. de Bruijn, J. de Physique 47 (1986) C3–9.Google Scholar
  6. [6]
    D. Levine and P.J. Steinhardt, Phys. Rev. B34 (1986) 596.CrossRefADSGoogle Scholar
  7. [7]
    J.E.S. Socolar and P.J. Steinhardt, Phys. Rev. B34 (1986) 617.CrossRefADSGoogle Scholar
  8. [8]
    Chr. Janot, J. Pannetier, J.M. Dubois and M. De Boissieu, Phys. Rev. Letters 62 (1989) 450.CrossRefADSGoogle Scholar
  9. [9]
    A.L. Mackay, Acta Crystallogr. 15 (1962) 916.CrossRefGoogle Scholar
  10. [10]
    A. Sadoc, A.M. Flank, P. Lagarde, P. Stainfort and P. Bellisent, J. de Phys. (Paris) 47 (1986) 873.Google Scholar
  11. [11]
    A. Sadoc, P. Lagarde and P. Sainfort, Int. J. of Modern Physics B1 (1987) 133.CrossRefADSGoogle Scholar
  12. [12]
    A. Sadoc, A.M. Flank, P. Lagarde and J.M. Dubois,ILL/CODEST Workshop on Quasicrystalline Materials, Grenoble, eds. C. Janot and J.M. Dubois, (World Scientific, Singapore, 1988) p. 148.Google Scholar
  13. [13]
    M. Audier and P. Guyot, Phil. Mag. B53 (1986) L43–51.Google Scholar
  14. [14]
    J.W. Cahn and D. Gratias, J. de Physique 47 (1986) C3-415–424.Google Scholar
  15. [15]
    C.L. Henley, J. of Non-Cryst. Sol. 75 (1985) 91.CrossRefGoogle Scholar
  16. [16]
    V. Elser and C.L. Henley, Phys. Rev. Lett. 55 (1985) 2883.CrossRefADSGoogle Scholar
  17. [17]
    See for instance N.N. Greenwood and T.C. Gibb,Mössbauer Spectroscopy (Chapman and Hall, London, 1971) p. 63.Google Scholar
  18. [18]
    G. le Caër, R.A. Brand and J.M. Dubois, Hyp. Int. 42 (1988) 943.Google Scholar
  19. [19]
    G. Czjzek, J. Fink, F. Götz, H. Schmidt, J.M.D. Coey, J.P. Rebouillat and A. Lienard, Phys. Rev. B23 (1981) 2513.CrossRefADSGoogle Scholar
  20. [20]
    J.M. Dubois, C. Janot and M. de Boissieu,ILL/CODEST Workshop on Quasicrystalline Materials, Grenoble eds. C. Janot and J.M. Dubois, (Word Scientific, Singapore, 1988), p. 97.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1990

Authors and Affiliations

  • R. D. Werkman
    • 1
  • I. Vincze
    • 1
  • P. J. Schurer
    • 1
  • F. van der Woude
    • 1
  1. 1.Solid State Physics LaboratoryMaterials Science Centre University of GroningenGroningenThe Netherlands

Personalised recommendations