Journal of Materials Science

, Volume 19, Issue 11, pp 3671–3679 | Cite as

Electrical properties of La-doped SrTiO3 (La: 0.1 to 2.0 at %) single crystals grown by xenon-arc image floating zone method

  • Keizo Uematsu
  • Osamu Sakurai
  • Nobuyasu Mizutani
  • Masanori Kato
Papers

Abstract

Lanthanum-doped semiconducting strontium titanate single crystals having various lanthanum contents were grown in an air atmosphere by the xenon-arc image floating zone method. The crystals were characterized by X-ray powder diffraction, EPMA analysis and chemical analysis. Each lanthanum was accompanied by a trivalent titanium ion in the grown crystal. The electrical conductivity of these crystals was measured at 20 to 1150° C, and it was found to increase linearly with increasing lanthanum content. The mobility of the charge carrier was estimated from the concentration of trivalent titanium and the conductivities of the crystals. The mobility in the low temperature region agreed with previous studies. However, a significant difference was found at high temperatures. An error in the temperature dependence in the previous study is responsible for this difference. It is stressed that care is necessary in applying the results of single crystalline studies when discussing high-temperature bulk defect chemistry.

Keywords

Electrical Conductivity Strontium Lanthanum Grown Crystal Strontium Titanate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Waku,Rev. Elect. Commun. Lab. 15 (1967) 689.Google Scholar
  2. 2.
    N. Yamaoka, M. Masuyama andM. Fukui,Bull. Amer. Ceram. Soc. 62 (1983) 698.Google Scholar
  3. 3.
    M. S. Wrighton, A. B. Ellis, P. R. Wolczanski, D. L. Morse, H. B. Abrahamson andD. S. Ginley,J. Amer. Chem. Soc. 98 (1976) 2774.CrossRefGoogle Scholar
  4. 4.
    B. A. Chang, G. Campet, J. Claverie, P. Hagenmuller andJ. B. Goodenough,J. Sol. Stat. Chem. 49 (1983) 247.CrossRefGoogle Scholar
  5. 5.
    M. A. Butler, M. Abramovich, F. Decter andJ. F. Fuliao,J. Electrochem. Soc. 128 (1981) 200.Google Scholar
  6. 6.
    B. Gregory, J. Arthur andG. Seidel,Phys. Rev. B19 (1979) 1039.Google Scholar
  7. 7.
    A. E. Paladino,J. Amer. Ceram. Soc. 48 (1965) 476.Google Scholar
  8. 8.
    D. Bauerle andW. Rehwald,Solid Stat. Commun. 27 (1978) 1343.CrossRefGoogle Scholar
  9. 9.
    D. Parker andJ. Yahia,Phys. Rev. 169 (1968) 605.CrossRefGoogle Scholar
  10. 10.
    R. L. Wild, E. M. Rockar andJ. C. Smith,ibid. B8 (1973) 3828.Google Scholar
  11. 11.
    O. N. Tufte andP. W. Chapman,ibid. 155 (1967) 796.CrossRefGoogle Scholar
  12. 12.
    H. P. R. Frederikse, W. R. Thurber andW. R. Hosler,ibid. 134 (1964) A442.CrossRefGoogle Scholar
  13. 13.
    L. C. Walters andR. E. Grace,J. Phys. Chem. Solids. 28 (1967) 239.CrossRefGoogle Scholar
  14. 14.
    H. P. R. Frederikse andW. R. Hosler,Phys. Rev. 161 (1967) 822.CrossRefGoogle Scholar
  15. 15.
    P. Gerthsen, K. H. Hardtl andA. Csillag,Phys. Stat. Sol. (a) 13 (1972) 127.Google Scholar
  16. 16.
    C. Lee, J. Yahia andJ. L. Brebner,Phys. Rev. B3 (1971) 2525.Google Scholar
  17. 17.
    G. Perluzzo andJ. Destry,Can. J. Phys. 56 (1978) 453.Google Scholar
  18. 18.
    C. Lee, J. Destry andJ. L. Brebner,Phys. Rev. B11 (1975) 2299.Google Scholar
  19. 19.
    G. Perluzzo andJ. Destry,Can. J. Phys. 54 (1976) 1482.Google Scholar
  20. 20.
    H. Yasunaga,J. Phys. Soc. Japan 24 (1968) 1035.CrossRefGoogle Scholar
  21. 21.
    H. Yamada andG. R. Miller,J. Sol. Stat. Chem. 6 (1973) 169.CrossRefGoogle Scholar
  22. 22.
    N.-H. Chan, R. K. Sharma andD. M. Smyth,J. Electrochem. Soc. 128 (1981) 169.Google Scholar
  23. 23.
    U. Balachandran andN. G. Eror,J. Sol. Stat. Chem. 39 (1981) 351.CrossRefGoogle Scholar
  24. 24.
    I. Burn andS. Neirman,J. Mater. Sci. 17 (1982) 3510.CrossRefGoogle Scholar
  25. 25.
    J. Bouwma, K. J. De Vries andA. J. Burggraaf,Phys. Stat. Sol. (a) 35 (1976) 281.Google Scholar
  26. 26.
    D. W. Johnson, L. E. Cross andF. A. Hummel,J. Appl. Phys. 41 (1970) 2828.CrossRefGoogle Scholar
  27. 27.
    N. G. Eror,J. Solid Stat. Chem. 38 (1981) 281.CrossRefGoogle Scholar
  28. 28.
    Idem, ibid. 40 (1981) 85.CrossRefGoogle Scholar
  29. 29.
    U. Balachandran andN. G. Eror,J. Electrochem. Soc. 129 (1982) 1021.Google Scholar
  30. 30.
    B. Odekirk, U. Balachandran, N. G. Eror andJ. S. Blakemore,Mat. Res. Bull. 17 (1982) 199.CrossRefGoogle Scholar
  31. 31.
    K. Kitazawa, K. Nagashima, T. Mizutani, K. Fueki andT. Mukaibo,J. Crystal Growth 39 (1977) 211.CrossRefGoogle Scholar
  32. 32.
    I. Shindo, N. Nii, K. Kitamura andS. Kimura,ibid. 46 (1979) 307.CrossRefGoogle Scholar
  33. 33.
    G. V. Bois, N. A. Mikhailova, E. I. Prodavtsova andV. A. Yusova,Inorg. Mater. 12 (1976) 1302.Google Scholar
  34. 34.
    R. Wernicke,Philips Res. Rept. 31 (1976) 526.Google Scholar
  35. 35.
    L. C. Walters andR. E. Grace,J. Phys. Chem. Sol. 28 (1967) 245.CrossRefGoogle Scholar
  36. 36.
    D. Hennings,Philips Res. Rept. 31 (1976) 516.Google Scholar
  37. 37.
    B. Odekirk, U. Balachandran, N. G. Eror andJ. S. Blakemore,Commun. Amer. Ceram. Soc. 66 (1983) C22.Google Scholar
  38. 38.
    J. Daniels andR. Wernicke,Philips Res. Rept. 31 (1976) 544.Google Scholar
  39. 39.
    J. Bouwma, K. J. De Vries andA. J. Burggraaf,Phys. Stat. Sol. (a) 35 (1976) 281.Google Scholar
  40. 40.
    A. Cocco andF. Masazza, in “Phase Diagrams for Ceramists”, supplement, (American Ceramic Society, 1969) Fig. 2334.Google Scholar
  41. 41.
    S. M. Sze, “Physics of Semiconductor Devices”, 2nd edn. (Wiley, New York, 1981) p. 34.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1984

Authors and Affiliations

  • Keizo Uematsu
    • 1
  • Osamu Sakurai
    • 1
  • Nobuyasu Mizutani
    • 1
  • Masanori Kato
    • 1
  1. 1.Department of Inorganic Materials, Faculty of EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations