Biochemical Genetics

, Volume 34, Issue 3–4, pp 117–131 | Cite as

AGI, a previously unreportedD. melanogaster α-glucosidase: Partial purification, characterization, and cytogenetic mapping

  • George F. Parker
  • David B. Roberts


InbredDrosophila melanogaster stocks were surveyed for α-glucosidases with nondenaturing gel electrophoresis using a fluorogenic substrate to stain the gels. The glucosidase most active under these conditions is polymorphic. We established that the polymorphism is genetic in origin and that the glucosidase was not likely to be a previously characterized enzyme. The gene encoding the enzyme was mapped cytogenetically to 33 A1-2- 33A8-B1, confirming that this is an enzyme not yet reported inD. melanogaster. The enzyme was partially purified by elution from nondenaturing gels, which enabled us to establish that it has optimal activity at pH 6 and interacts most strongly with α-1–4 glucosides. A developmental and tissue survey suggested that this enzyme could have a purely digestive role or be involved in carbohydrate metabolism inside the organism. We propose that this enzyme is involved in either starch digestion or glycogen metabolism.

Key words

α-glucosidases Drosophila melanogaster carbohydrate metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, I., and Doane, W. W. (1978). Genetic regulation of tissue specific expression ofAmylase structural genes inDrosophila melanogaster.Proc. Natl. Acad. Sci. USA 75(9):4446.PubMedGoogle Scholar
  2. Akam, M. E., Roberts, D. B., and Wolfe, J. (1978).Drosophila haemolymph proteins: Purification, characterization and genetic mapping of larval serum protein 2 inD. melanogaster.Biochem. Genet. 16101.CrossRefPubMedGoogle Scholar
  3. Ashburner, M. (1989).Drosophila a Laboratory Handbook Cold Spring Harbor Press, Cold Spring Harbor, NY.Google Scholar
  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72248.CrossRefPubMedGoogle Scholar
  5. Burns, D. M., and Touster, O. (1982). Purification and characterization of glucosidase II, an endoplasmic reticulum hydrolase involved in glycoprotein biosynthesis.J. Biol. Chem. 257(17):9991.Google Scholar
  6. Burton, R. S., and La Spada, A. (1986). Trehalase polymorphism inDrosophila melanogaster.Biochem. Genet. 24715.CrossRefPubMedGoogle Scholar
  7. Diem, K., and Lentnor, E. (eds.) (1970).Scientific Tables 7th ed., Ciba-Giegy, Basel, pp. 186–187.Google Scholar
  8. Dowd, J. E., and Riggs, D. S. (1965). A comparison of estimates of Michaelis-Menton kinetic constants from various linear transformations.J. Biol. Chem. 240863.PubMedGoogle Scholar
  9. Faber, C. N., and Glew, R. H. (1984). α-D-Mannosidase. In Bergmeyer, H. U. (ed.),Methods of Enzymatic Analysis, Vol. 4; 3rd ed., Verlag Chemie, Weinheim, pp. 230–240.Google Scholar
  10. Ferreira, C., and Terra, W. R. (1980). Intracellular distribution of hydrolases in midgut caeca cells from an insect with an emphasis on plasma membrane-bound enzymes.Comp. Biochem. Physiol. 66B467.Google Scholar
  11. Frei, E., Schuh, R., Baumgartner, S., Burri, M., Noll, M., Jürgens, G., Seifert, E., Nauber, V., and Jäckle, H., (1988). Molecular characterisation of spalt a homeotic gene required for head and tail development in the Drosophila embryo.EMBO. J. 7197.PubMedGoogle Scholar
  12. Gade, R. (1991). Hyperglycaemia or hypertrehalosaemia? The effect of insect neuropeptides on haemolymph sugars.J. Insect Physiol. 37483.CrossRefGoogle Scholar
  13. Hames, B. D. (1981). An introduction to polyacrylamide gels. In Hames, B. D., and Rickwood, D. (eds.),Gel Electrophoresis of Proteins, a Practical Approach, IRL Press.Google Scholar
  14. Herbert, D. N., Foellmer, B., and Helenius, A. (1995). Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum.Cell 81425.Google Scholar
  15. Hers, H. G. (1963). α-Glucosidase deficiency in generalized glycogen storage disease (Pompe's disease).Biochem. J. 8611.PubMedGoogle Scholar
  16. Hickey, D. A., Benkel, B. F., Abukashawa, S., and Haus, S. (1986). DNA rearrangement causes multiple changes in gene expression at theAmylase locus inDrosophila melanogaster.Biochem. Genet. 26(11/12):757.Google Scholar
  17. Hubbard, S. C., and Ivatt, R. J. (1981). Synthesis and processing of asparagine-linked oligosaccharides.Annu. Rev. Biochem. 50555.CrossRefPubMedGoogle Scholar
  18. Huber, R. E., and Lefebvre, Y. A. (1971). The purification and some properties of soluble trehalase and sucrase fromDrosophila melanogaster.Can. J. Biochem. 491155.PubMedGoogle Scholar
  19. Jürgens, G. (1988) Head and tail development of theDrosophila embryo involvesspalt, a novel homeotic gene.EMBO J. 7(1):189.PubMedGoogle Scholar
  20. LeJune, N., Thinès-Sempoux, P., and Hers, H. G. (1963). Tissue fractionation studies: Intracellular distribution and properties of α-glucosidases in rat liver.Biochem. J. 8616.Google Scholar
  21. Lindsley, D. L., and Zimm, G. G. (1992).The Genome of Drosophila melanogaster Academic Press, New York.Google Scholar
  22. Mange, A. P., and Sandler, L. (1973). A note on the maternal effect mutantsdaughterless andabnormal oocyte inDrosophila melanogaster.Genetics 7373.PubMedGoogle Scholar
  23. Oliver, M. J., and Williamson, J. H. (1979). Genetic and biochemical aspects of sucrase fromDrosophila melanogaster.Biochem. Genet. 17(9/10):897.PubMedGoogle Scholar
  24. Oliver, M. J., Huber, R. E., and Williamson, J. H. (1978). Genetic and biochemical aspects of trehalase fromDrosophila melanogaster.Biochem. Genet. 16(9/10):927.PubMedGoogle Scholar
  25. Parker, G. F. (1993). D.Phil thesis, Oxford University, Oxford.Google Scholar
  26. Parker, G. F., Williams, P. J., Butters, T. D., and Roberts, D. B. (1991). Detection of the lipid-linked precursor oligosaccharide of N-linked protein glycosylation inDrosophila melanogaster.FEBS Lett. 209(1):58.Google Scholar
  27. Peterson, G. L. (1983). Determination of total protein.Methods Enzymol. 9195.PubMedGoogle Scholar
  28. Roberts, D. B. (ed.) (1986).Drosophila: A Practical Approach, IRL Press.Google Scholar
  29. Roberts, D. B., and Evans-Roberts, S. (1979). The genetic and cytogenetic localization of the three structural genes coding for the major protein ofDrosophila larval serum.Genetics 93663.PubMedGoogle Scholar
  30. Sandler, L. (1977). Evidence for a set of closely linked autosomal genes that interact with sex-chromosome heterochromatin inDrosophila melanogaster.Genetics 86567.PubMedGoogle Scholar
  31. Steele, J. (1982). Glycogen phosphorylase in insects.Insect Biochem. 12(2):131.Google Scholar
  32. Stoll, V. S., and Blanchard, J. S. (1990) Buffers: Principle and practice.Methods Enzymol. 18224.PubMedGoogle Scholar
  33. Tanimura, T., Kitamura, K., Fukuda, T., and Kikuchi, T. (1979). Purification and partial characterisation of three forms of α-glucosidase from the fruit flyDrosophila melanogaster.J. Biochem. 85123.PubMedGoogle Scholar
  34. Terra, W. R., and Ferreira, C. (1981). The physiological role of the peritrophic membrane and trehalase digestive enzymes in the midgut and excreta of starved larvae ofRhynchosciara. J. Insect Physiol.27(5):325.CrossRefGoogle Scholar
  35. Terra, W. R., and Jordão, B. (1989). Final digestion of starch inMusca domestica larvae. Distribution and properties of midgut α-D-glucosidases and glucoamylase.Insect Biochem. 19(3):285.Google Scholar
  36. Wigglesworth, V. D. (1972).The Principles of Insect Physiology 7th ed. Chapman and Hall, London.Google Scholar
  37. Wyatt, G. R. (1972). The biochemistry of sugars and polysaccharides in insects.Adv. Insect Physiol. 4287.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • George F. Parker
    • 1
  • David B. Roberts
    • 2
  1. 1.Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
  2. 2.Genetics Laboratory, Department of Biochemistry, South Parks RoadUniversity of OxfordOxfordUK

Personalised recommendations