Biochemical Genetics

, Volume 31, Issue 9–10, pp 449–460 | Cite as

Genetic structure of natural populations ofDryas iulia (Lepidoptera: Nymphalidae) revealed by enzyme polymorphism and mitochondrial DNA (mtDNA) restriction fragment length polymorphism (RFLP)

  • Karen Luisa Haag
  • Aldo Mellender de Araújo
  • Arnaldo Zaha
Article

Abstract

Dryas iulia appears to have undergone a mode of evolution different from that of other members of its subfamily (Heliconiinae). While other species constitute highly subdivided and inbred populations, those ofD. iulia are thought to be large and uniform. Analyzing six samples from Southern Brazil (state of Rio Grande do Sul) in relation to three enzyme systems (EST, LAP, and PGM) and their mtDNA RFLP patterns, we found that they are very similar at the molecular level. TheF statistics for enzyme polymorphism data revealed that inbreeding makes a great contribution to the population homozygosity, sinceFIS equals 0.1322 andFST equals 0.0023. Since the chi-square test showed thatFST is not significant, we conclude that all localities belong to the same population. The mtDNA differentiation was about 12 times greater than for nuclear genes;FST was equivalent to 0.0265. We suggest that this difference is due to a higher dispersal of males, in relation to females.

Key words

population structure butterfly enzyme polymorphism mitochondrial DNA (mtDNA) restriction fragment length polymorphism (RFLP) dispersal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, N. (1974).Statistical Methods in Biology English Universities Press, London.Google Scholar
  2. Benson, W. W. (1971). Evidence for the evolution of unpalatability through kin selection in the Heliconiinae (Lepidoptera).Am. Nat. 105213.CrossRefGoogle Scholar
  3. Birky, C. W., Jr., Maruyama, T., and Fuerst, P. (1983). An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results.Genetics 103513.PubMedGoogle Scholar
  4. Brower, A. V. Z., and Boyce, T. M. (1991). Mitochondrial DNA variation in monarch butterflies.Evolution 451281.Google Scholar
  5. Brown, K. S., Jr. (1981). The biology ofHeliconius and related genera.Annu. Rev. Entomol. 26427.CrossRefGoogle Scholar
  6. Crow, J. F., and Kimura, M. (1970).An Introduction to Population Genetics Theory Harper & Row, New York.Google Scholar
  7. Gilbert, L. E., and Singer, M. C. (1975). Butterfly ecology.Annu. Rev. Ecol. Syst. 6365.CrossRefGoogle Scholar
  8. Haag, K. L., and Araújo, A. M. (1993). Inbreeding, genetic load and morphometric variation in natural populations ofDryas iulia (Lepid.; Nymph) (submitted for publication).Google Scholar
  9. Harris, H., and Hopkinson, D. A. (1976).Handbook of Enzyme Electrophoresis in Human Genetics North Holland, Amsterdam.Google Scholar
  10. Hedrick, P. W. (1971). A new approach to measuring genetic similarity.Evolution 25276.Google Scholar
  11. Jones, C. S., Tegelström, H., Latchman, D. S., and Berry, R. J. (1988). An improved method for mitochondrial DNA isolation suitable for use in the study of closely related populations.Biochem. Genet. 2683.CrossRefPubMedGoogle Scholar
  12. Nei, M. (1987).Molecular Evolutionary Genetics Columbia University Press, New York.Google Scholar
  13. Oliveira, D. L., and Araújo, A. M. (1992). Studies on the genetics and ecology ofHeliconius erato (Lepidoptera; Nymphlidae). IV. Effective size and variability of the red raylets in natural populations.Rev. Brasil. Genet. 15(4):789.Google Scholar
  14. Pansera, M. C. G., and Araújo, A. M. (1983). Distribution and heritability of the red raylets inHeliconius erato phyllis (Lepid.; Nymph.).Heredity 51643.Google Scholar
  15. Romanowsky, H. P., Gus, R., and Araújo, A. M. (1985). Studies on the genetics and ecology ofHeliconius erato (LEPID.; NYMPH.). III. Population size, preadult mortality, adult resources and polymorphism in natural populations.Rev. Brasil. Biol. 45563.Google Scholar
  16. Saalfeld, K., and Araújo, A. M. (1981). Studies on the genetics and ecology ofHeliconius erato (Lepidoptera; Nymphalidae). I. Demography of a natural population.Rev. Brasil. Biol. 41855.Google Scholar
  17. Sambrook, J., Fritishi, E. F., and Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  18. Spiess, E. B. (1989).Genes in Populations John Wiley & Sons, New York.Google Scholar
  19. Tajima, F. (1989). The effect of change in population size on DNA polymorphism.Genetics 123597.PubMedGoogle Scholar
  20. Turner, J. R. G. (1977). Butterfly mimicry: The genetical evolution of an adaptation. In Hecht, M. K., Steere W. C., and Wallace B. (eds.),Evolutionary Biology Plenum, New York, pp. 163–206.Google Scholar
  21. Turner, J. R. G. (1988). The evolution of mimicry: A solution to the problem of punctuated equilibrium.Am. Nat. 131(S):42.CrossRefGoogle Scholar
  22. Weir, B. S. (1990). Intraspecific differentiation. In Hillis, D. M., and Moritz, C. (eds.),Molecular Systematics Sinauer Associates, New York, pp. 373–410.Google Scholar
  23. Weir, B. S., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of populations structure.Evolution 381358.Google Scholar
  24. Young, A. M. (1978). Spatial properties of niche separation amongEueides andDryas butterflies (Lepidoptera; Nymphalidae; Heliconiinae) in Costa Rica.N.Y. Entomol. Soc. 862.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Karen Luisa Haag
    • 1
  • Aldo Mellender de Araújo
    • 2
  • Arnaldo Zaha
    • 3
  1. 1.Departmento de GenéticaUFPR, Centro PolitécnicoCuritiba, PRBrasil
  2. 2.Departmento de GenéticaUFRGSPorto Alegre, RSBrasil
  3. 3.Departamento de BiotecnologiaUFRGSPorto Alegre, RSBrasil

Personalised recommendations