Biochemical Genetics

, Volume 27, Issue 9–10, pp 591–602 | Cite as

Novel restriction fragment length polymorphism of the growth hormone gene in inbred rats

  • Tetsuo Kunieda
  • Hiroshi Ikadai
  • Minami Matsui
  • Nobuo Nomura
  • Tomonori Imamichi
  • Ryotaro Ishizaki


A novel restriction fragment length polymorphism in inbred rats was detected by Southern blot analysis with rat growth hormone cDNA as a probe. Four alleles, characterized byPstI fragments of 1.2, 1.1, 0.9, and 0.7 kb, respectively, were detected in 27 strains examined. The same distribution of polymorphisms was observed on digestion of DNAs of these strains with three other enzymes,PvuII,HindIII, andBamHI. Moreover, the same differences in length of allelic restriction fragments were obtained with these restriction enzymes as withPstI. These findings suggested that the polymorphism was caused by insertion or deletion of variable DNA segments in the second intron of the growth hormone gene. Linkage analyses using backcross progeny provided no evidence for close linkage between the restriction fragment length polymorphism locus and 10 other loci examined.

Key words

mammalian genetics Rattus norvegicus growth hormone gene restriction fragment length polymorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M., Baverstock, P. R., Watts, C. H. S., and Gutman, G. A. (1984). Enzyme marker in inbred rat strains: Genetics of new markers and strain profiles.Biochem. Genet. 22611.CrossRefPubMedGoogle Scholar
  2. Barta, A., Richards, R. I., Boxter, J. D., and Shine, J. (1981). Primary structure and evolution of rat growth hormone gene.Proc. Natl. Acad. Sci. USA 784867.PubMedGoogle Scholar
  3. Bell, G. I., Selby, M. J., and Rutter, W. J. (1982). The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences.Nature 29531.PubMedGoogle Scholar
  4. Bender, K., Nagel, M., and Gunther, E. (1982).Es-6, a further polymorphic esterase in the rat.Biochem. Genet. 20221.CrossRefPubMedGoogle Scholar
  5. Bender, K., Bissbort, S., Kuhn, A., Nagel, M., and Gunther, E. (1985). Genetic variation of an acid phosphatase (Acp-1) in the laboratory rat: Possible homology with mouseAP-1 and humanACP2.Biochem. Genet. 241.Google Scholar
  6. Botstein, D., White, R. L., Skolnick, M., and Davis, R. W. (1980). Construction of a genetic linkage map using restriction fragment length polymorphisms.Am. J. Hum. Genet. 32314.PubMedGoogle Scholar
  7. Capon, D. J., Chen, E. Y., Levinson, A. D., Seeburg, P. H., and Goeddel, D. V. (1983). Complete nucleotide sequences of T24 human bladder carcinoma oncogene and its normal homologue.Nature 30233.CrossRefPubMedGoogle Scholar
  8. Caskey, C. T. (1987). Disease diagnosis by recombinant DNA methods.Science 2361223.PubMedGoogle Scholar
  9. Chien, Y. H., and Thompson, E. B. (1980). Genomic organization of rat prolactin and growth hormone genes.Proc. Natl. Acad. Sci. USA 774583.PubMedGoogle Scholar
  10. Cobb, R. R., Stoming, T. A., and Whitney, J. B., III (1987). The aryl hydrocarbon hydroxylase (Ah) locus and a novel restriction fragment length polymorphism (RFLP) are located on mouse chromosome 12.Biochem. Genet. 25401.CrossRefPubMedGoogle Scholar
  11. Cooke, N. E., Szpirer, C., and Levan, G. (1986). The related genes encoding growth hormone and prolactin have been dispersed to chromosomes 10 and 17 in the rat.Endocrinology 1192451.PubMedGoogle Scholar
  12. Denhardt, D. T. (1966). A membrane-filter technique for the detection of complementary DNA.Biochem. Biophys. Res. Commun. 23641.CrossRefPubMedGoogle Scholar
  13. Feinberg, A. P., and Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem. 1326.CrossRefPubMedGoogle Scholar
  14. Gasser, D. L. (1972). Seminal vesicle protein in rats: A gene in the fourth linkage group determining electrophoretic variants.Biochem. Genet. 661.CrossRefPubMedGoogle Scholar
  15. Gasser, D. L., Yadvish, K., Feinstein, P., and Passmore, H. C. (1988). DNA polymorphisms defined by the Tul08 probe map to theTla region of mouse chromosome 17.Biochem. Genet. 26475.PubMedGoogle Scholar
  16. Goodbourn, S. E. Y., Higgs, D. R., Clegg, J. B., and Weatherall, D. J. (1983). Molecular basis of length polymorphism in the human zeta-globin gene complex.Proc. Natl. Acad. Sci. USA 805022.PubMedGoogle Scholar
  17. Huang, L. S., and Breslow, J. L. (1987). A unique AT-rich hypervariable minisatellite 3′ to the ApoB gene defines a high information restriction fragment length polymorphism.J. Biol. Chem. 2628952.PubMedGoogle Scholar
  18. Hughes, S. H., Payvar, F., Spector, D., Schimke, R. T., Robinson, H. L., Payne, G. S., Bishop, J. M., and Varmus, H. E. (1979). Heterogeneity of genetic loci in chickens: Analysis of endogenous viral and nonviral genes by cleavage of DNA with restriction endonuclease.Cell 18347.CrossRefPubMedGoogle Scholar
  19. Jagadeeswaran, P., Forget, B. G., and Weissman, S. M. (1981). Short interspersed repetitive DNA elements in eucaryotes: Transposable DNA elements generated by reverse transcription of RNA Pol III transcripts?Cell 26141.CrossRefPubMedGoogle Scholar
  20. Kominami, R., Muramatsu, M., and Moriwaki, K. (1983). A mouse type 2Alu sequence (M2) is mobile in the genome.Nature 30187.CrossRefPubMedGoogle Scholar
  21. Matsumoto, K. (1980). New polymorphisms of esterase 7 and esterase 8 in inbred strains of rats: Tissue expression and linkage studies.Biochem. Genet. 18879.CrossRefPubMedGoogle Scholar
  22. McConnell, T. J., Talbot, W. S., McIndoe, R. A., and Wakeland, E. K. (1988). The origin of MHC class II gene polymorphism within the genusMus.Nature 332651.CrossRefPubMedGoogle Scholar
  23. Milner, R. J., Bloom, F. E., Lai, C., Lerner, R. A., and Sutcliffe, J. G. (1984). Brain-specific genes have identifier sequences in their introns.Proc. Natl. Acad. Sci. USA 81713.PubMedGoogle Scholar
  24. Nakamura, Y., Leppert, M., O'Connell, P., Wolff, R., Holm, T., Culver, M., Martin, C., Fujimoto, E., Hoff, M., Kumlin, E., and White R. (1987). Variable number of tandem repeat (VNTR) markers for human gene mapping.Science 2351616.PubMedGoogle Scholar
  25. Nikaido, H., Yamada, J., and Kondo, Y. (1982). Male urinary protein-1 (Mup-1) in the rat:Mup-1 assigned to linkage group II.J. Hered. 73119.PubMedGoogle Scholar
  26. Page, G. S., Smith, S., and Goodman, H. M. (1981). DNA sequence of rat growth hormone gene: Location of the 5′ terminus of the growth hormone mRNA and identification of an internal transposon-like element.Nucleic Acids Res. 92087.PubMedGoogle Scholar
  27. Palmiter, R. D., Brinster, R. L., Hammer, R. E., Trumbauer, M. E., Rosenfeld, M. G., Brinberg, N. C., and Evans, R. M. (1982). Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes.Nature 300611.CrossRefPubMedGoogle Scholar
  28. Paul, P. R., and Elliott, R. W. (1987). Analysis of mouseAmy locus in recombinant inbred mouse strains.Biochem. Genet. 25569.CrossRefPubMedGoogle Scholar
  29. Rubin, C. M., Houek, C. M., Deininger, P. L., Friedmann, T., and Schmid, C. W. (1980). Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences.Nature 284372.CrossRefPubMedGoogle Scholar
  30. Schuler, L. A., Weber, J. M., and Gorski, J. (1983). Polymorphism near the rat prolactin gene caused by insertion of anAlu-like element.Nature 305159.CrossRefPubMedGoogle Scholar
  31. Seeburg, P. H., Shine, J., Martial, J. A., Baxter, J. D., and Goodman, H. M. (1977). Nucleotide sequence and amplification in bacteria of structural gene for rat growth hormone.Nature 270486.CrossRefPubMedGoogle Scholar
  32. Singer, M. F. (1982). SINEs and LINEs: Highly repeated short and long interspersed sequences in mammalian genomes.Cell 28433.CrossRefPubMedGoogle Scholar
  33. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol. 98503.PubMedGoogle Scholar
  34. Stoker, N. G., Cheah, K. S. E., Griffin, J. R., Pope, F. M., and Solomon, E. (1985). A highly polymorphic region 3′ to the human Type II collagen gene.Nucleic Acids Res. 134613.PubMedGoogle Scholar
  35. Uehara, H., Abe, K., Park, C. H. T., Shin, H. S., Bennett, D., and Artzt, K. (1987). The molecular organization of theH-2K region of twot-haplotypes: Implications for the evolution of genetic diversity.EMBO J. 683.PubMedGoogle Scholar
  36. White, R., Leppert, M., Bishop, D. T., Barker, D., Berkowitz, J., Brown, C., Callahan, P., Holm, T., and Jerominski, L. (1985). Construction of linkage maps with DNA markers for human chromosomes.Nature 313101.CrossRefPubMedGoogle Scholar
  37. Yamada, J., Nikaido, H., and Kondo, Y. (1981). Genetic studies of RBC catalase in the rat (Rattus norvegicus).Jpn. J. Genet. 56447.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Tetsuo Kunieda
    • 1
  • Hiroshi Ikadai
    • 1
  • Minami Matsui
    • 2
  • Nobuo Nomura
    • 2
  • Tomonori Imamichi
    • 1
  • Ryotaro Ishizaki
    • 2
  1. 1.Imamichi Institute for Animal ReproductionSaitamaJapan
  2. 2.Molecular Oncology LaboratoryNippon Veterinary and Zootechnical CollegeTokyoJapan

Personalised recommendations