Hyperfine Interactions

, Volume 63, Issue 1–4, pp 213–218 | Cite as

Transverse-and zero-field μSR investigation of magnetism and superconductivity in (Y1xPr x )Ba2Cu3O7

  • D. W. Cooke
  • M. S. Jahan
  • R. S. Kwok
  • R. L. Lichti
  • T. R. Adams
  • C. Boekema
  • W. K. Dawson
  • A. Kebede
  • J. Schwegler
  • J. E. Crow
  • T. Mihalisin
Superconductivity: Interplay with Magnetism Muon Probe Sites

Abstract

Zero-field muon-spin-rotation (μSR) measurements on (Y1 x Pr x )Ba2Cu3O7 [x=1.0, 0.8, 0.6, and 0.54] show evidence for antiferromagnetic ordering of the Cu moments within the Cu−O planes, with Néel temperatures 285, 220, 35. 30 and 20 K, respectively. Forx=1.0 the local muon magnetic field is ≈16 mT, but decreases to ≈12 mT at 17K, due to additional magnetic ordering. The zero-field data, in conjunction with transport data, allow construction of a complete phase diagram for this system. Transverse-field (1 kOe) μSR data forx=0.2 (T c =75 K) show that the muon depolarization is determined primarily by the Cu nuclear moments forT>T c , and by the vortex state forT<T c . Fitting the superconducting-state data to a BCS model yields an extrapolated zero-temperature magnetic penetration depth of 2170 Å.

Keywords

Magnetic Field Vortex Thin Film Phase Diagram Penetration Depth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Kebede, C.S. Jee, J. Schwegler, J.E. Crow, T. Mihalisin, G.H. Myer, R. E.Salomon, P. Schlottman M.V. Kuric, S.H. Bloom and R.P. Guertin, Phys. Rev. B 40 (1989) 4453.CrossRefADSGoogle Scholar
  2. [2]
    J.L. Peng, P. Klavins, R.N. Shelton, H.B. Radousk, P.A. Hahn and L. Bernardez, Phys. Rev. B. 40 (1989) 4517.CrossRefADSGoogle Scholar
  3. [3]
    D.W. Cooke, R.S. Kwok, R.L. Lichti, T.R. Adams, C. Boekema, W.K., Dawson, A. Kebede, J. Schwegler, J.E. Crow and T. Mihalisin, Phys. Rev. B 41 (1990) 4801.CrossRefADSGoogle Scholar
  4. [4]
    I. Felner, U. Yaron, I. Nowik, E.R. Bauminger, Y. Wolfus, E.R. Yacoby, G. Hilscher and N. Pillmayr, Phys. Rev. B 40 (1989) 6739.CrossRefADSGoogle Scholar
  5. [5]
    R.H. Heffner, M. Leon, M.E. Schillaci, D.E. MacLaughlin and S.A. Dodds, J. Appl. Phys. 53 (1982) 2174.CrossRefADSGoogle Scholar
  6. [6]
    D.W. Cooke, R.L. Hutson, R.S. Kwok, M. Maez, H. Rempp, M.E. Schillaci, J.L. Smith, J.O. Willis, R.L. Lichti, K.-C.B. Chan, C. Boekema, S.P. Weathersby, J.A. Flint and J. Oostens Phys. Rev. B 37 (1988) 9401.CrossRefADSGoogle Scholar
  7. [7]
    D.W. Cooke, R.L. Hutson, R.S. Kwok, M. Maez, H. Rempp, M.E. Schillaci, J.L. Smith, J.O. Willis, R.L. Lichti, K.-C.B. Chan, C. Boekema, S.P. Weathersby and J. Oostens, Phys. Rev. B 39 (1989) 2748.CrossRefADSGoogle Scholar
  8. [8]
    P.D. De Gennes,Superconductivity of Metals and Alloys (Benjamin, New York, 1966) p. 26.Google Scholar
  9. [9]
    D.R. Harshman, G. Aeppli, E.J. Ansaldo, B. Batlogg, J.H. Brewer, J.F. Carolan, R.J. Cava M. Celio, A.C.D. Chaklader W.N. Hardy, S.R. Kreitzman, G.M. Luke, D.R. Noakes and M. Senba, Phys. Rev. B 36 (1987) 2386.CrossRefADSGoogle Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1990

Authors and Affiliations

  • D. W. Cooke
    • 1
  • M. S. Jahan
    • 1
  • R. S. Kwok
    • 1
  • R. L. Lichti
    • 2
  • T. R. Adams
    • 2
  • C. Boekema
    • 3
  • W. K. Dawson
    • 3
  • A. Kebede
    • 4
  • J. Schwegler
    • 4
  • J. E. Crow
    • 4
  • T. Mihalisin
    • 4
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Texas Tech UniversityLubbockUSA
  3. 3.San Jose State UniversitySan JoseUSA
  4. 4.Temple UniversityPhiladelphiaUSA

Personalised recommendations