Skip to main content
Log in

Dynamic measurements of thermal transport coefficients and boundary resistance I. Normal4He

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The thermal conductivity,K, and the thermal diffusivity,D T , of normal liquid4He have been obtained from the temperature response, ΔT (ω), across a fluid layer of thickness,d, to an ac heat flux,Q(t)=Q 0 exp(iωt). Previous transient heat flux experiments measured the thermal relaxation of the fluid towards equilibrium and assumed the dominance of a single slowest mode. The present ac technique allows measurements under steady-state conditions while driving the system at a single frequency, ω. The response curve for ΔT(ω)/Q 0 yields data forK,D T and the boundary resistance,R b . Boundary effects appear at frequencies higher than τ1 ≡ DT/d2 where the fluid is unresponsive to bulk heat transport. We use this fact to obtainR b with high accuracy in the normal phase from the high frequency response. In addition, the apparatus permits the fluid thickness,d, to be varied continuously andin situ from zero to 3 mm, allowing for further consistency in the fluid measurements. This work also includes data for the onset of convection whereQ 0>Q c, andQ c corresponds to the heat amplitude at convective onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Y. Tam and G. Ahlers,Phys. Rev. B 32, 5932 (1985).

    Article  ADS  Google Scholar 

  2. M. Dingus, F. Zhong, and H. Meyer,J. Low Temp. Phys. 65, 185 (1986).

    Article  Google Scholar 

  3. J. A. Lipa and T. C. P. Chui,Phys. Rev. Letters 58, 1340 (1987).

    Article  ADS  Google Scholar 

  4. F. Zhong, D. Gestrich, M. Dingus, and H. Meyer,J. Low Temp. Phys. 68, 55 (1987).

    Article  Google Scholar 

  5. J. M. Pfotenhauer, J. J. Niemela, and R. J. Donnelly,J. Fluid Mech. 175, 85 (1987).

    Article  ADS  Google Scholar 

  6. G. Ahlers and R. V. Duncan,Phys. Rev. Letters 61, 846 (1988).

    Article  ADS  Google Scholar 

  7. Q. Li, T. C. P. Chui, and J. A. Lipa,Physica B 156, 533 (1990).

    ADS  Google Scholar 

  8. J. Tuttle, F. Zhong, and H. Meyer,J. Low Temp. Phys. 83, 283 (1991).

    Article  Google Scholar 

  9. M. Tanaka and A. Ikushima,J. Low Temp. Phys. 35, 9 (1979).

    Article  Google Scholar 

  10. M. Dingus, F. Zhong, J. Tuttle, and H. Meyer,J. Low Temp. Phys. 65, 331 (1986).

    Google Scholar 

  11. F. Zhong, J. Tuttle, and H. Meyer,J. Low Temp. Phys. 79, 9 (1990).

    Article  Google Scholar 

  12. J. Tuttle, F. Zhong, and H. Meyer,J. Low Temp. Phys. 82, 15 (1991).

    Article  Google Scholar 

  13. D. Murphy and H. Meyer,J. Low Temp. Phys. 89, 375 (1992).

    Article  Google Scholar 

  14. D. Murphy and H. Meyer,J. Low Temp. Phys. 99, 745 (1995).

    Article  Google Scholar 

  15. D. Murphy and H. Meyer, to be published.

  16. F. London,Superfluids, Vol. 2, Dover Publications, New York (1950).

    Google Scholar 

  17. I. M. Khalatnikov and V. Zharkov,Zh. Eksp. Teor. Fiz. 32, 1108 (1957);Soc. Phys. JETP 5, 905 (1957).

    Google Scholar 

  18. T. P. Ptukha,Zh. Eksp. Teor. Fiz. 40, 1583 (1961);Sov. Phys. JETP 13, 1112 (1961).

    Google Scholar 

  19. D. Frank and V. Dohm,Phys. Rev. Letters 62, 1864 (1989).

    Article  ADS  Google Scholar 

  20. A. Griffin,Can. J. Phys. 47, 429 (1969).

    ADS  Google Scholar 

  21. C. F. Barenghi, P. G. J. Lucas, and R. J. Donnelly,J. Low Temp. Phys. 44, 491 (1981).

    Article  Google Scholar 

  22. G. Ahlers, P. C. Hohenburg, and M. Lücke,Phys. Rev. A 32: 3519 (1985).

    Article  ADS  Google Scholar 

  23. R. P. Behringer,J. Low. Temp. Phys. 81, 1 (1990).

    Article  Google Scholar 

  24. L. D. Landau and E. M. Lifshitz,Fluid Mechanics, pergamon Press, Oxford (1987).

    Google Scholar 

  25. H. Gao, G. Meteaff, and R. P. Behringer,J. Fluid Mech. 174, 209 (1985).

    Article  ADS  Google Scholar 

  26. R. P. Behringer and G. Ahlers,J. Fluid Mech. 125, 219 (1982).

    Article  ADS  Google Scholar 

  27. D. Murphy and H. Meyer,J. Low Temp. Phys. 97, 489 (1994).

    Article  Google Scholar 

  28. Properties of Muterials at Low Temperatures, V. Johnson (ed.), Pergamon Press, New York (1961).

    Google Scholar 

  29. G. K. White,Experimental Techniques in Low Temperature Physics, Clarendon Press, Oxford (1968).

    Google Scholar 

  30. S. Chandrasekhar,Hydrodynamics and Hydromagnetic Stability, Dover Pub. Inc., New York (1961).

    Google Scholar 

  31. J. S. Olafsen and R. P. Behringer,Phys. Rev. B 52, 61 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olafsen, J.S., Behringer, R.P. Dynamic measurements of thermal transport coefficients and boundary resistance I. Normal4He. J Low Temp Phys 106, 673–704 (1997). https://doi.org/10.1007/BF02395931

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02395931

Keywords

Navigation