Advertisement

Biochemical Genetics

, Volume 26, Issue 11–12, pp 717–732 | Cite as

Altered expression of chitin synthetase activity and biochemical changes in the cell wall in a developmental mutant ofPhycomyces

  • Elvia Ruiz-Flores
  • Everardo Lopez-Romero
  • Arturo Flores-Carreon
  • Felix Gutierrez-Corona
Article
  • 12 Downloads

Abstract

ThePhycomyces developmental mutant S356 elaborates spores which show a much poorer viability and a higher affinity for Calcofluor White than the wild-type spores. Protease-activated extracts of the mutant spores showed higher levels of chitin synthetase activity than the parental strain-derived spores. High levels of enzyme activity in the mutant extracts, but not in the corresponding wild-type extracts, could be detected in the absence of an exogenous protease. The high basal active chitin synthetase is not the result of activation by endogeneous proteases during cell breakage since protease inhibitors did not reduce, but rather increased, the activity levels. The analysis of cell wall composition in the mutant spores revealed significant changes in the proportion of uronic acids and protein but not in chitin. The mutant phenotype is discussed in relation to the developmental stage at which the alterations connected with cell wall metabolism occurred.

Key words

Phycomyces spores developmental mutant Calcofluor chitin synthetase cell wall 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashwell, G. (1957). Colorimetric analysis of sugars. In Colowick, S. P., and Kaplan, N. O. (eds.),Methods in Enzymology, Vol. III Academic Press, New York.Google Scholar
  2. Bartnicki-Garcia, S. (1968). Cell wall chemistry, morphogenesis, and taxonomy of fungi.Annu. Rev. Microbiol. 2287.CrossRefPubMedGoogle Scholar
  3. Bartnicki-Garcia, S., and Bracker, C. E. (1984). Unique properties of chitosomes. In Nombela, C. (ed.),Microbial Cell Wall Synthesis and Autolysis Elsevier, Amsterdam.Google Scholar
  4. Bergman, K. (1972). Blue-light control of sporangiophore initiation inPhycomyces.Planta 10753.CrossRefGoogle Scholar
  5. Bergman, K., Burke, P. V., Cerda-Olmedo, E., David, C. N., Delbruck, M., Foster, K. W., Goodell, E. W., Heisenberg, M., Meissner, G., Zalokar, M., Dennison, D. S., and Shropshire, W. (1969).Phycomyces. Bacteriol. Rev. 3399.Google Scholar
  6. Bitter, T., and Muir, H. M. (1962). A modified uronic acid carbazol reaction.Anal. Biochem. 4330.CrossRefPubMedGoogle Scholar
  7. Borchert, R. (1962) Uber die Azetataktivierung der Sporangiosporen vonPhycomyces blakesleeanus.Beitr. Biol. Flanz. 3831.Google Scholar
  8. Bracker, C. E. (1968). The ultrastructure and development of sporangia inGilbertella persicaria.Mycologia 601016.PubMedGoogle Scholar
  9. Cabib, E., and Bowers, B. (1975). Timing and function of chitin synthesis in yeast.J. Bacteriol. 1241586.PubMedGoogle Scholar
  10. Cabib, E., and Farkas, V. (1971). The control of morphogenesis: An enzymatic mechanism for the initiation of septum formation in yeast.Proc. Natl. Acad. Sci. USA 682052.PubMedGoogle Scholar
  11. Cabib, E., and Roberts, R. (1982). Synthesis of the yeast cell wall and its regulation.Annu. Rev. Biochem. 51763.CrossRefPubMedGoogle Scholar
  12. Cabib, E., Kang, M. S., Bowers, B., Elango, N., Mattia, E., Slater, M., and Au-Young, J. (1984). Chitin synthesis in yeast, a vectorial process in the plasma membrane. In Nombela, C. (ed.),Microbial Cell Wall Synthesis and Autolysis Elsevier, Amsterdam.Google Scholar
  13. Cerda-Olmedo, E., and Lipson, E. D. (1987). A biography ofPhycomyces. In Cerda-Olmedo, E., and Lipson, E. D. (eds.),Phycomyces Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  14. Dimler, R. J., Schaeffer, W. C., Wise, C. S., and Rist, C. E. (1952). Quantitative paper chromatography of D-glucose and its oligosaccharides.Anal. Chem. 241411.CrossRefGoogle Scholar
  15. Endo, A., and Misato, T. (1969). Polyoxin D, a competitive inhibitor of UDP-N-acetylglucosamine: Chitin N-acetylglucosaminyltransferase inNeurospora creassa.Biochem. Biophys. Res. Commun. 37710.CrossRefGoogle Scholar
  16. Furch, B. (1984). Cell wall constituents ofPhycomyces blakesleeanus. 4. Structure of sporangiospore and germ sphere walls.Cytobios 4027.Google Scholar
  17. Furch, B., and Pambor, L. (1978). Cell wall constituents ofPhycomyces blakesleeanus. 3. Carbohydrate and protein composition of sporangiospore cell walls in relation to heat induced germination.Microbios Lett. 871.Google Scholar
  18. Galbraith, D. W. (1981). Microfluorometric quantitation of cellulose biosynthesis by plant protoplasts using Calcofluor white.Physiol. Plant. 53116.Google Scholar
  19. Galland, P., and Ootaki, T. (1987). Differentiation and cytology. In Cerda-Olmedo, E., and Lipson, E. D. (eds.) “Phycomyces” Cold Spring Harbor Laboratory, New York.Google Scholar
  20. Galland, P., and Russo, V. E. A. (1979). Photoinitiation of sporangiophores inPhycomyces mutants deficient in phototropism and in mutants lacking beta-carotene.Photochem. Photobiol. 291009.Google Scholar
  21. Galle, H. (1964). Untersuchungen uber die Entwicklung vonPhycomyces blakesleeanus unter Anwendung des Mikrozeitrafferfilmes.Protoplasma 59423.Google Scholar
  22. Guiterrez-Corona, F., and Cerda-Olmedo, E. (1985). Environmental influences in the development ofPhycomyces sporangiophores.Exp. Mycol. 956.Google Scholar
  23. Gutierrez-Corona, F., and Cerda-Olmedo, E. (1988). Genetic determination of sporangiophore development inPhycomyces. Dev. Gen (in press).Google Scholar
  24. Kreger, D. R. (1954). Observation on cell walls of yeast and some other fungi by X-ray diffraction and solubility tests.Biochim. Biophys. Acta 131.CrossRefPubMedGoogle Scholar
  25. Koga, K., and Ootaki, T. (1983). Growth of the morphological, piloboloid mutants ofPhycomyces blakesleeanus.Exp. Mycol. 7148.Google Scholar
  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193265.PubMedGoogle Scholar
  27. Maeda, H., and Ishida, N. (1967). Specificity of binding of hexapyranosyl polysaccharides with fluorescent brighteners.J. Biochem. 62276.PubMedGoogle Scholar
  28. Martinez-Cadena, G., and Ruiz-Herrera, J. (1987). Activation of chitin synthetase fromPhycomyces blakesleeanus by calcium and calmodulin.Arch. Microbiol. 148280.CrossRefGoogle Scholar
  29. McDonald, C. E., and Chen, L. L. (1965). The Lowry modification of the folin reagent for determination of proteinase activity.Anal. Biochem. 10175.CrossRefPubMedGoogle Scholar
  30. Micol, J. L., and Murillo, F. J. (1986). Characterization ofPhycomyces blakesleeanus mutants temperature-sensitive for heat-shock induced germination.Curr. Genet. 10755.PubMedGoogle Scholar
  31. Orlean, P. (1987). Two chitin synthases inSaccharomyces cerevisiae.J. Biol. Chem. 2625732.PubMedGoogle Scholar
  32. Ortiz-Castellanos, M. L., and Gutierrez-Corona, J. F. (1988). The sensitive period for light and temperature regulation of sporangiophore development inPhycomyces.Planta 174305.CrossRefGoogle Scholar
  33. Rivero, F., and Cerda-Olmedo, E. (1987). Spore activation by acetate, propionate and heat inPhycomyces mutants.Mol. Gen. Genet. 209149.CrossRefGoogle Scholar
  34. Robbins, W. J., Kavanagh, V. W., and Kavanagh, F. (1942). Growth substances and dormancy of spores ofPhycomyces.Bot. Gaz. 104224.CrossRefGoogle Scholar
  35. Rudolph, H. (1958). Entwicklungsphysiologische Untersuchungen an den Sporangiophoren vonPhycomyces blakesleeanus.Biol. Zentralbl. 77385.Google Scholar
  36. Ruiz-Herrera, J., and Bartnicki-Garcia, S. (1976). Proteolytic activation and inactivation of chitin synthetase fromMucor rouxii.J. Gen. Microbiol. 97241.PubMedGoogle Scholar
  37. Schlamowitz, M., and Peterson, L. U. (1959). Studies on the optimum pH for the action of pepsin on “native” and denatured bovine serum albumin and bovine hemoglobin.J. Biol. Chem. 2343137.PubMedGoogle Scholar
  38. Sommer, L., and Halbsguth, W. (1957). Grundlegende Versuche zur Keimungsphysiologie von Pilzsporen.Forschungs. Wirtschafts. Verkehrsminister. Nordrein-Westfalen F.R.G. 4111.Google Scholar
  39. Sussman, A. S. (1976). Activators of fungal spore germination. In Weber, D. J., and Hess, W. M. (eds).The Fungal Spore John Wiley, New York.Google Scholar
  40. Sutter, R. P. (1975). Mutations affecting sexual development inPhycomyces blakesleeanus.Proc. Natl. Acad. Sci. USA 72127.PubMedGoogle Scholar
  41. Thornton, R. M. (1973). New photoresponses ofPhycomyces.Plant Physiol. 51570.Google Scholar
  42. Tu, J. C., and Malhotra, S. K. (1976). The formation of sporangiospores inPhycomyces.Microbios 1515.PubMedGoogle Scholar
  43. Van Laere, A. J. (1986). Biochemistry of spore germination inPhycomyces.FEMS Microbiol. Rev. 32189.Google Scholar
  44. Van Laere, A. J., and Carlier, A. R. (1978). Synthesis and proteolytic activation of chitin synthetase inPhycomyces blakesleeanus Burgeff.Arch. Microbiol. 116181.CrossRefGoogle Scholar
  45. Van Laere, A. J., and Rivero, F. (1986). Properties of a germination mutant ofPhycomyces blakesleeanus.Arch. Microbiol. 145290.CrossRefGoogle Scholar
  46. Van Laere, A. J., Carlier, A. R., and Van Assche, J. A. (1976). Effect of 5-fluorouracil and cycloheximide on the early development ofPhycomyces blakesleeanus spores and the activity of N-acetylglucosamine synthesizing enzymes.Arch. Microbiol. 108113.CrossRefPubMedGoogle Scholar
  47. Van Laere, A. J., Carlier, A. R., and Van Assche, J. A. (1977). Cell wall carbohydrates inPhycomyces blakesleeanus Burgeff.Arch. Microbiol. 112303.CrossRefPubMedGoogle Scholar
  48. Van Laere, A. J., Van Assche, J. A., and Carlier, A. R. (1980). Density changes ofPhycomyces spores after reversible and irreversible activation.Arch. Microbiol. 124289.CrossRefGoogle Scholar
  49. Van Laere, A. J., Furch, B., and Van Assche, J. A. (1987). The sporangiospore: Dormancy and germination. In Cerda-Olmedo, E., and Lipson, E. D. (eds.)Phycomyces Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Elvia Ruiz-Flores
    • 2
  • Everardo Lopez-Romero
    • 2
    • 1
  • Arturo Flores-Carreon
    • 2
    • 1
  • Felix Gutierrez-Corona
    • 2
  1. 1.Departamento de Genetica y Biologia MolecularCentro de Investigacion y de Estudios Avanzados del IPNMexico
  2. 2.Instituto de Investigacion en Biologia Experimental, Facultad de QuimicaUniversidad de GuanajuatoGuanajuato, GtoMexico

Personalised recommendations