, Volume 148, Issue 5, pp 468–476 | Cite as

Composition of suberin-associated waxes from the subterranean storage organs of seven plants

Parsnip, carrot, rutabaga, turnip, red beet, sweet potato and potato
  • Karl E. Espelie
  • Nagwa Z. Sadek
  • P. E. Kolattukudy


The waxes associated with the suberin in the periderm of the underground storage organs of parsnip (Pastinaca sativa L.), carrot (Daucus carota L.), rutabaga (Brassica napobrassica Mill.), turnip (Brassica rapa L.), red beet (Beta vulgaris L.), sweet potato (Ipomoea batatas L.) and potato (Solanum tuberosum L.) were isolated, fractionated into hydrocarbon, wax ester, free fatty alcohol and free fatty acid fractions, and analyzed by combined gas chromatography and mass spectrometry. The amount of wax extracted from the periderm of the storage organs ranged from 2 to 32 μg/cm2. The hydrocarbons from the suberin layer have a broader chain-length distribution, a predominance of shorter carbon chains, and a higher proportion of even-numbered carbon chains than the leaf alkanes from the same plants. The major components of the free and esterified fatty alcohols and fatty acids have an even number of carbon atoms, and are similar in chain-length distribution to their counterparts found covalently attached to the suberin polymers; however, these suberin components are shorter in chain length than their cuticular analogues from the leaves. Also extracted from the storage organs were polar components which included fatty alcohols and fatty acids in a conjugated form, and ω-hydroxy acids and dicarboxylic acids. Evidence is presented that removal of the wax from the periderm of whole storage organs results in a decrease in diffusion resistance to moisture.

Key words

Fatty acids and alcohols Hydrocarbons Storage organs (waxes) Suberin-associated waxes Wax esters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamovics, J.A., Johnson, G., Stermitz, F.R.: Ferulates from cork layers ofSolanum tuberosum andPseudotsuga menziesii. Phytochemistry,16, 1089–1090 (1977)CrossRefGoogle Scholar
  2. Behari, M., Andhiwal, C.K., Streibl, M.: Hydrocarbons, esters and free alcohols in the bark ofSaraca indica L. Collect. Czech. Chem. Commun.42, 1385–1388 (1977)Google Scholar
  3. Bescansa-López, J.L., Ribas-Marqués, I.: Quimica del corcho. XVI. Hidrocarburos parafinicos en el corcho. An. R. Soc. Esp. Fis. Quim.62, 871–874 (1966)Google Scholar
  4. Brieskorn, C.H., Binnemann, P.H.: Chemische Zusammensetzung des Suberins der Kartoffelschale. Z. Lebensm. Unters. Forsch.154, 213–222 (1974)CrossRefGoogle Scholar
  5. Dean, B.B., Kolattukudy, P.E., Davis, R.W.: Chemical composition and ultrastructure of suberin from hollow heart tissue of potato tubers (Solanum tuberosum). Plant Physiol.59, 1008–1010 (1977)Google Scholar
  6. Espelie, K.E., Kolattukudy, P.E.: Composition of the aliphatic components of “suberin” from the bundle sheaths ofZea mays leaves. Plant Sci. Lett.15, 225–230 (1979)Google Scholar
  7. Espelie, K.E., Dean, B.B., Kolattukudy, P.E.: Composition of lipid-derived polymers from different anatomical regions of severeal plant species. Plant Physiol.64, 1089–1093 (1979)Google Scholar
  8. Falk, V.H., El-Hadidi, M.N.: Der Feinbau der Suberinschichten verkorkter Zellwände. Z Naturforsch.16b, 134–137 (1961)Google Scholar
  9. Hardmann, R., Brain, K.R.: Alkanes of tubers ofDioscorea deltoidea. Phytochemistry10, 1115–1119 (1971)Google Scholar
  10. Herbin, G.A., Robins, P.A.: Patterns of variation and development in leaf wax alkanes. Phytochemistry8, 1985–1998 (1969)Google Scholar
  11. Haas, K., Schönherr, J.: Composition of soluble cuticular lipids and water permeability of cuticular membranes fromCitrus leaves. Planta146, 399–403 (1979)CrossRefGoogle Scholar
  12. Holloway, P.J.: The composition of suberin from the corks ofQuercus suber L. andBetula pendula Roth. Chem. Phys. Lipids9, 158–170 (1972a)Google Scholar
  13. Holloway, P.J.: The suberin composition of the cork layers from someRibes species. Chem. Phys. Lipids9, 171–179 (1972b)Google Scholar
  14. Holloway, P.J., Hunt, G.M., Baker, E.A., Macey, M.J.K.: Chemical composition and ultrastructure of the epicuticular wax in four mutants ofPisum sativum (L.). Chem. Phys. Lipids20, 141–155 (1977)Google Scholar
  15. Holman, R.T., Nichols, P.C.: Characterization of the lipids of some orchids. Phytochemistry11, 333–337 (1972)CrossRefGoogle Scholar
  16. Kaneda, T.: Hydrocarbons in spinach: two distinctive carbon ranges of aliphatic hydrocarbons. Phytochemistry8, 2039–2044 (1969)CrossRefGoogle Scholar
  17. Khan, A.A., Kolattukudy, P.E.: Decarboxylation of long chain fatty acids to alkanes by cell-free preparations of pea leaves (Pisum sativum). Biochem. Biophys. Res. Commun.61, 1379–1386 (1974)CrossRefPubMedGoogle Scholar
  18. Kolattukudy, P.E.: Biosynthesis of wax inBrassica oleracea. Biochemistry4, 1844–1855 (1965)CrossRefGoogle Scholar
  19. Kolattukudy, P.E.: Chemistry and biochemistry of the aliphatic components of suberin. In: Biochemistry of Wounded Plant Tissues, pp. 43–84, Kahl, G., ed. Berlin, New York: de Gruyter & Co. 1978Google Scholar
  20. Kolattukudy, P.E.: Biopolyester membranes of plants: cutin and suberin. Science (1980, in press)Google Scholar
  21. Kolattukudy, P.E., Agrawal, V.P.: Structure and composition of aliphatic constituents of potato tuber skin (suberin). Lipids9, 682–691 (1974)Google Scholar
  22. Kolattukudy, P.E., Kronman, K., Poulose, A.J.: Determination of structure and composition of suberin from the roots of carrot, parsnip, rutabaga, turnip, red beet and sweet potato by combined gas-liquid chromatography and mass spectrometry. Plant Physiol.55, 567–573 (1975)Google Scholar
  23. Kolattukudy, P.E., Dean, B.B.: Structure, gas chromatographic measurement and function of suberin synthesized by potato tuber slices. Plant Physiol.54, 116–121 (1974)Google Scholar
  24. Kolattukudy, P.E., Walton, T.J.: The biochemistry of plant cuticular lipids. In: Progress in the Chemistry of Fats and Other Lipids, vol. XIII, pt. 3, pp. 121–174, Holman, R.T., ed. New York: Pergamon Press 1973Google Scholar
  25. Kreger, D.R.: Wax. In: Encycl. Plant Physiol. vol X, pp. 249–269, Ruhland, W., ed. Berlin, Göttingen, Heidelberg: Springer 1958Google Scholar
  26. Laties, G.G., Hoelle, C., Jacobson, B.S.: α-Oxidation of endogenous fatty acids in fresh potato slices. Phytochemistry11, 3403–3411 (1972)CrossRefGoogle Scholar
  27. Loveland, P.M., Laver, M.L.: Monocarboxylic and dicarboxylic acids fromPseudotsuga menziesii bark. Phytochemistry11, 430–432 (1972a)Google Scholar
  28. Loveland, P.M., Laver, M.L.: ω-Hydroxy fatty acids and fatty alcohols fromPseudotsuga menziesii bark. Phytochemistry11, 3080–3081 (1972b)Google Scholar
  29. Martin, J.T., Juniper, B.E.: The cuticles of plants. New York: St. Martins Press 1970Google Scholar
  30. Mazliak, P.: Chemistry of plant cuticles. Progr. Phytochemistry1, 49–111 (1968)Google Scholar
  31. Meyer, M.: Die submikroskopische Struktur der kutinisierten Zellmembranen. Protoplasma29, 552–586 (1938)CrossRefGoogle Scholar
  32. Morrison, R.I., Bick, W.: The wax fraction of some soils: separation and determination of some components. J. Sci. Fd. Agric.18, 351–355 (1967)Google Scholar
  33. Nishimoto, S.: Hydrocarbons in leaf waxes of eggplants and carrots. J. Sci. Hiroshima Univ. A-II37, 375–384 (1973)Google Scholar
  34. O'Brien, T.P., Carr, D.J.: A suberized layer in the cell walls of the bundle sheath of grasses. Aust. J. Biol. Sci.23, 275–287 (1970)Google Scholar
  35. O'Brien, T.P., Kuo, J.: Development of the suberized lamella in the mestome sheath of wheat leaves. Aust. J. Bot.23, 783–794 (1975)CrossRefGoogle Scholar
  36. Peterson, C.A., Peterson, R.L., Robards, A.W.: A correlated histochemical and ultrastructural study of the epidermis and hypodermis of onion roots. Protoplasma96, 1–21 (1978)CrossRefGoogle Scholar
  37. Riley, R.G., Kolattukudy, P.E.: Evidence for covalently attachedp-coumaric acid and ferulic acid in cutins and suberins. Plant Physiol.56, 650–654 (1975)Google Scholar
  38. Robards, A.W., Jackson, S.M., Clarkson, D.T., Sanderson, J.: The structure of barley roots in relation to the transport of ions into the stele. Protoplasma77, 291–311 (1973)CrossRefGoogle Scholar
  39. Rodriguez-Miguens, B., Ribas-Marqués, I.: Investigaciones quimicas sobre el corcho deSolanum tuberosum L. (patata). An. R. Soc. Esp. Fis. Quim.68, 303–308 (1972)Google Scholar
  40. Schönherr, J.: Water permeability of isolated cuticular membranes: The effect of cuticular waxes on diffusion of water. Planta131, 159–164 (1976)CrossRefGoogle Scholar
  41. Scott, F.M.: Lipid deposition in intercellular space. Nature (London)203, 164–165 (1964)Google Scholar
  42. Sitte, P.: Der Feinbau der Korkzellwände. In: Die Chemie der Pflanzenzellwand, pp. 421–432, Treiber, E., ed. Berlin, Göttingen, Heidelberg: Springer 1957Google Scholar
  43. Sitte, P.: Zum Feinbau der Suberinschichten in Flaschenkork. Protoplasma54, 555–559 (1962)Google Scholar
  44. Sitte, P.: Die Bedeutung der molekularen Lamellenbauweise von Korkzellwänden. Biochem. Physiol. Pflanz.168, 287–297 (1975)Google Scholar
  45. Soliday, C.L., Kolattukudy, P.E., Davis, R.W.: Chemical and ultrastructural evidence that waxes associated with the suberin polymer constitute the major diffusion barrier to water vapor in potato tuber (Solanum tuberosum L.). Planta146, 607–614 (1979)CrossRefGoogle Scholar
  46. Stahl, E.: Thin layer chromatography: a laboratory handbook, 2nd edn. New York: Academic Press 1969Google Scholar
  47. Stránský, K., Streibl, M., Herout, V.: On natural waxes. VI. Distribution of wax hydrocarbons in plants at different evolutionary levels. Collect. Czech. Chem. Commun.32, 3213–3220 (1967)Google Scholar
  48. Streibl, M., Stránský, K., Herout, V.:n-Alkanes of some tree barks. Collect. Czech. Chem. Commun.43, 320–326 (1978)Google Scholar
  49. Tulloch, A.P.: Chemistry of waxes of higher plants. In: Chemistry and Biochemistry of Natural Waxes, pp. 235–287, Kolattukudy, P.E., ed. Amsterdam, New York: Elsevier 1976Google Scholar
  50. von Wettstein-Knowles, P., netting, A.G.: Esterified alkan-1-ols and alkan-2-ols in barley epicuticular wax. Lipids11, 478–484 (1976)Google Scholar
  51. Waldron, J.D., Gowers, D.S., Chibnall, A.C., Piper, S.H.: Further observations on the parafins and primary alcohols of plant waxes. Biochem. J.78, 435–442 (1961)PubMedGoogle Scholar
  52. Walton, T.J., Kolattukudy, P.E.: Determination of the structures of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry. Biochemistry11, 1885–1897 (1972)CrossRefPubMedGoogle Scholar
  53. Wattendorf, J.: Ultrahistochemical reactions of the suberized cell walls inAcorus, Acacia, andLarix. Z. Pflanzenphysiol73, 214–224 (1974)Google Scholar
  54. Wattendorf, J.: Ultrastructure of the suberized styloid crystal cells inAgave leaves. Planta128, 163–165 (1976)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Karl E. Espelie
    • 1
  • Nagwa Z. Sadek
    • 1
  • P. E. Kolattukudy
    • 1
  1. 1.Department of Agricultural Chemistry and Program in Biochemistry and BiophysicsWashington State UniversityPullmanUSA

Personalised recommendations