Acta Mathematica

, Volume 142, Issue 1, pp 221–274 | Cite as

Quadratic differentials and foliations

  • John Hubbard
  • Howard Masur


Quadratic Form Exact Sequence Riemann Surface Tangent Space Implicit Function Theorem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Ahlfors, L., On quasiconformal mappings.Journal d'Analyse Math., (1954), 1–54.Google Scholar
  2. [2].
    Atiyah, M. F., Bott, R. &Gårding, L., Lacuna for hyperbolic differential operators II.Acta Math., 131 (1973), 145–205.MATHMathSciNetCrossRefGoogle Scholar
  3. [3].
    Bers, L., Quasiconformal Mappings and Teichmüller's Theorem inAnalytic functions. R. Nevanlinna et al., eds., Princeton University Press, 1960.Google Scholar
  4. [4].
    Dieudonné, J.,Foundations of Modern Analysis. Academic Press. New York, 1960.MATHGoogle Scholar
  5. [5].
    Douady, A. &Hubbard, J., On the density of Strebel differentials.Inventiones Math., 30 (1975), 175–179.MATHMathSciNetCrossRefGoogle Scholar
  6. [6].
    Earle, C. &Eelis, J., A fibre bundle description of Teichmüller theory.J. Differential Geometry. 3 (1969), 19–45.MATHMathSciNetGoogle Scholar
  7. [7].
    Epstein, D., Curves on 2-manifolds and isotopies.Acta Math., 115 (1966), 83–107.MATHMathSciNetCrossRefGoogle Scholar
  8. [8].
    Godement, R.,Topologie Algebrique et Theorie des Faisceaux, Paris, 1958.Google Scholar
  9. [9].
    Greenberg, M.,Lectures on Algebraic Topology. W. A. Benjamin, Reading, Mass. (1966).MATHGoogle Scholar
  10. [10].
    Gunning, R.,Lectures on Riemann Surfaces. Princeton University Press, (1966).Google Scholar
  11. [11].
    Hubbard, J., Sur les sections analytiques de la courbo universelle de Teichmüller.Mem. Amer. Math. Soc., 166 (1976).Google Scholar
  12. [12].
    Hubbard, J. &Masur, H., On the existence and uniqueness of Strebel differentials.Bull. Amer. Math. Soc., 82 (1976), 77–79.MATHMathSciNetCrossRefGoogle Scholar
  13. [13].
    Jenkins, J. A., On the existence of certain general extremal metrics.Ann. of Math., 66 (1957), 440–453.MATHMathSciNetCrossRefGoogle Scholar
  14. [14].
    Kerckhoff, S., The Asymptotic Geometry of Teichmüller Space, Thesis, Princeton University, 1978.Google Scholar
  15. [15].
    Strebel, K., Über quadratische differentiale mit geschlossen trajectorien and extremale quasikonforme abbildungen. InFestband zum 70. Geburstag von Rolf Nevanlinna, Springer-Verlag, Berlin, 1966.Google Scholar
  16. [16].
    Strebel, K., On quadratic differentials and extremal quasiconformal mappings. Lecture Notes, University of Minnesota, 1967.Google Scholar
  17. [17].
    Thurston, W., On the geometry and dynamics of diffeomorphisms of surfaces. Preprint.Google Scholar

Copyright information

© Almqvist & Wiksell 1979

Authors and Affiliations

  • John Hubbard
    • 1
  • Howard Masur
    • 2
  1. 1.Department of MathematicsCornell UniversityIthacaUSA
  2. 2.Department of MathematicsUniversity of Illinois at Chicago CircleChicagoUSA

Personalised recommendations