Acta Mathematica

, Volume 142, Issue 1, pp 221–274 | Cite as

Quadratic differentials and foliations

  • John Hubbard
  • Howard Masur


Quadratic Form Exact Sequence Riemann Surface Tangent Space Implicit Function Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Ahlfors, L., On quasiconformal mappings.Journal d'Analyse Math., (1954), 1–54.Google Scholar
  2. [2].
    Atiyah, M. F., Bott, R. &Gårding, L., Lacuna for hyperbolic differential operators II.Acta Math., 131 (1973), 145–205.MATHMathSciNetCrossRefGoogle Scholar
  3. [3].
    Bers, L., Quasiconformal Mappings and Teichmüller's Theorem inAnalytic functions. R. Nevanlinna et al., eds., Princeton University Press, 1960.Google Scholar
  4. [4].
    Dieudonné, J.,Foundations of Modern Analysis. Academic Press. New York, 1960.MATHGoogle Scholar
  5. [5].
    Douady, A. &Hubbard, J., On the density of Strebel differentials.Inventiones Math., 30 (1975), 175–179.MATHMathSciNetCrossRefGoogle Scholar
  6. [6].
    Earle, C. &Eelis, J., A fibre bundle description of Teichmüller theory.J. Differential Geometry. 3 (1969), 19–45.MATHMathSciNetGoogle Scholar
  7. [7].
    Epstein, D., Curves on 2-manifolds and isotopies.Acta Math., 115 (1966), 83–107.MATHMathSciNetCrossRefGoogle Scholar
  8. [8].
    Godement, R.,Topologie Algebrique et Theorie des Faisceaux, Paris, 1958.Google Scholar
  9. [9].
    Greenberg, M.,Lectures on Algebraic Topology. W. A. Benjamin, Reading, Mass. (1966).MATHGoogle Scholar
  10. [10].
    Gunning, R.,Lectures on Riemann Surfaces. Princeton University Press, (1966).Google Scholar
  11. [11].
    Hubbard, J., Sur les sections analytiques de la courbo universelle de Teichmüller.Mem. Amer. Math. Soc., 166 (1976).Google Scholar
  12. [12].
    Hubbard, J. &Masur, H., On the existence and uniqueness of Strebel differentials.Bull. Amer. Math. Soc., 82 (1976), 77–79.MATHMathSciNetCrossRefGoogle Scholar
  13. [13].
    Jenkins, J. A., On the existence of certain general extremal metrics.Ann. of Math., 66 (1957), 440–453.MATHMathSciNetCrossRefGoogle Scholar
  14. [14].
    Kerckhoff, S., The Asymptotic Geometry of Teichmüller Space, Thesis, Princeton University, 1978.Google Scholar
  15. [15].
    Strebel, K., Über quadratische differentiale mit geschlossen trajectorien and extremale quasikonforme abbildungen. InFestband zum 70. Geburstag von Rolf Nevanlinna, Springer-Verlag, Berlin, 1966.Google Scholar
  16. [16].
    Strebel, K., On quadratic differentials and extremal quasiconformal mappings. Lecture Notes, University of Minnesota, 1967.Google Scholar
  17. [17].
    Thurston, W., On the geometry and dynamics of diffeomorphisms of surfaces. Preprint.Google Scholar

Copyright information

© Almqvist & Wiksell 1979

Authors and Affiliations

  • John Hubbard
    • 1
  • Howard Masur
    • 2
  1. 1.Department of MathematicsCornell UniversityIthacaUSA
  2. 2.Department of MathematicsUniversity of Illinois at Chicago CircleChicagoUSA

Personalised recommendations