Advertisement

Acta Mathematica

, 142:157 | Cite as

Riemannian geometry as determined by the volumes of small geodesic balls

  • A. Gray
  • L. Vanhecke
Article

Keywords

Manifold Riemannian Manifold Symmetric Space Sectional Curvature Curvature Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1].
    Alekseevskij, D. V., On holonomy groups of Riemannian manifolds.Ukrain. Math. Z., 19 (1967), 100–104.MATHGoogle Scholar
  2. [2].
    Allendoerfer, C. B., Steiner's formula on a generalS n+1.Bull. Amer. Math. Soc., 54 (1948), 128–135.MATHMathSciNetGoogle Scholar
  3. [3].
    Berger, M., Sur les variétés d'Einstein compactes.C.R. III e Réunion Math. Expression Latine, Namur, (1965), 35–55.Google Scholar
  4. [4].
    —, Le spectre des variétés riemanniennes.Rev. Roumaine Math. Pures Appl., 23 (1968), 915–931.Google Scholar
  5. [5].
    Berger, M., Gauduchon, P. &Mazet, E.,Le spectre d'une variété riemannienne. Lecture Notes in Mathematics, vol. 194, Springer-Verlag, Berlin and New York, 1971.MATHGoogle Scholar
  6. [6].
    Bertrand, J., Diguet &Puiseux, V., Démonstration d'un théorème de Gauss.Journal de Mathématiques, 13 (1848), 80–90.Google Scholar
  7. [7].
    Besse, Arthur L.,Manifolds all of whose geodesics are closed. Ergebnisse der Mathematik, vol. 93, Springer-Verlag, Berlin and New York, 1978.MATHGoogle Scholar
  8. [8].
    Borel, A., On the curvature operator of the Hermitian symmetric manifolds.Ann. of Math., 71 (1960), 508–521.MATHMathSciNetCrossRefGoogle Scholar
  9. [9].
    Brown, R. B. &Gray, A., Manifolds whose holonomy group is a subgroup of Spin (9).Differential Geometry (in honor of K. Yano). Kinokuniya, Tokyo, 1972, 41–59.Google Scholar
  10. [10].
    Calabi, E. &Vesentini, E., On compact locally symmetric Kähler manifolds.Ann. of Math., 71 (1960), 472–507.MATHMathSciNetCrossRefGoogle Scholar
  11. [11].
    Dessertine, J. C., Expressions nouvelles de la formule de Gauss-Bonnet en dimension 4 et 6.C.R. Acad. Sci. Paris Sér. A, 273 (1971), 164–167.MATHMathSciNetGoogle Scholar
  12. [12].
    Donelly, H., Symmetric Einstein spaces and spectral geometry.Indiana Univ. Math. J., 24 (1974), 603–606.MathSciNetCrossRefGoogle Scholar
  13. [13].
    —, Topology and Einstein Kaehler metrics.J. Differential Geometry, 11, (1976), 259–264.MathSciNetGoogle Scholar
  14. [14].
    Eisenhart, L. P.,A treatise on the differential geometry of curves and surfaces. Ginn, 1909.Google Scholar
  15. [15].
    Erbacher, J., Riemannian manifolds of constant curvature and the growth function of submanifolds.Michigan Math. J., 19 (1972) 215–223.MATHMathSciNetCrossRefGoogle Scholar
  16. [16].
    Gauss, C. F., Disquisitiones generales circa superficies curvas.C. F. Gauss Werke Band IV, Georg Olm Verlag, Hildesheim, 1973, 219–258.Google Scholar
  17. [17].
    Gilkey, P., The spectral geometry of a Riemannian manifold.J. Differential Geometry, 10 (1975), 601–618.MATHMathSciNetGoogle Scholar
  18. [18].
    —, Local invariants of the Riemannian metric for two-dimensional manifolds.Indiana Univ. Math. J., 23 (1974), 855–882.MATHMathSciNetCrossRefGoogle Scholar
  19. [19].
    Gray, A., Invariants of curvature operators of four-dimensional Riemannian manifolds.Canadian Math. Congress Proc. of the 13th Biennial Seminar (1971), vol. 2, 42–65.Google Scholar
  20. [20].
    —, The volume of a small geodesic ball of a Riemannian manifold.Michigan Math. J., 20 (1973), 329–344.MATHMathSciNetGoogle Scholar
  21. [21].
    —, Geodesic balls in Riemannian product manifolds.Differential Geometry and Relativity (in honor of A. Lichnerowicz), Reidel Publ. Co., Dordrecht, 1976, 63–66.Google Scholar
  22. [22].
    —, Weak holonomy groups.Math. Z., 123 (1971), 290–300.MATHMathSciNetCrossRefGoogle Scholar
  23. [23].
    —, Some relations between curvature and characteristic classes.Math. Ann., 184 (1970), 257–267.MATHMathSciNetCrossRefGoogle Scholar
  24. [24].
    —, A generalization of F. Schur's theorem.J. Math. Soc. Japan, 21 (1969), 454–457.MATHMathSciNetCrossRefGoogle Scholar
  25. [25].
    —, Pseudo-Riemannian almost product manifolds and submersionsJ. Math. Mech., 16 (1967), 715–738.MATHMathSciNetGoogle Scholar
  26. [26].
    Grossman, N., On characterization of Riemannian manifolds by growth of tubular neighborhoods.Proc. Amer. Math. Soc., 32 (1972), 556–560.MATHMathSciNetCrossRefGoogle Scholar
  27. [27].
    Günther, P., Einige Sätze über das Volumenelement eines Riemannschen Raumes.Publ. Math. Debrecen, 7 (1960), 78–93.MATHMathSciNetGoogle Scholar
  28. [28].
    Holzsager, R. A., Riemannian manifolds of finite order.Bull. Amer. Math. Soc., 78 (1972), 200–201.MATHMathSciNetCrossRefGoogle Scholar
  29. [29].
    —, A characterization of Riemannian manifolds of constant curvature.J. Differential Geometry, 8 (1973), 103–106.MATHMathSciNetGoogle Scholar
  30. [30].
    Holzsager, R. A. &Wu, H., A characterization of two-dimensional Riemannian manifolds of constant curvature.Michigan Math. J., 17 (1970), 297–299.MATHMathSciNetCrossRefGoogle Scholar
  31. [31].
    Hotelling, H., Tubes and spheres inn-spaces, and a class of statistical problems.Amer. J. Math., 61 (1939), 440–460.MATHMathSciNetCrossRefGoogle Scholar
  32. [32].
    Liouville, J., Sur un théorème de M. Gauss concernant le produit des deux rayons de courbure principaux en chaque point d'une surface.Journal de Mathématiques, 12 (1847), 291–304.Google Scholar
  33. [33].
    Sakai, T., On eigen-values of Laplacian and curvature of Riemannian manifolds.Tôhoku Math. J., 23, (1971), 589–603.MATHGoogle Scholar
  34. [34].
    Singer, I. M. &Thorpe, J. A., The curvature of 4-dimensional Einstein spaces.Global Analysis (papers in honor of K. Kodaira), Univ. of Tokyo Press, Tokyo, 1969, 355–365.Google Scholar
  35. [35].
    Vermeil, H., Notiz über das mittlere Krümmungsmass einern-fach ausgedehnten Riemann'sche Mannigfaltigkeit.Akad. Wiss. Göttingen Nachr., (1917), 334–344.Google Scholar
  36. [36].
    Watanabe, Y., On the characteristic functions of harmonic quaternion Kählerian spaces.Ködai Math. Sem. Rep., 27 (1976), 410–420.MATHGoogle Scholar
  37. [37].
    Weyl, H., On the volume of tubes.Amer. J. Math., 61 (1939), 461–472.MATHMathSciNetCrossRefGoogle Scholar
  38. [38].
    Wu, H., A characteristic property of the Euclidean plane.Michigan Math. J., 16 (1969), 141–148.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Almqvist & Wiksell 1979

Authors and Affiliations

  • A. Gray
    • 1
  • L. Vanhecke
    • 2
  1. 1.University of MarylandCollege ParkUSA
  2. 2.Katholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations