Acta Mathematica

, Volume 142, Issue 1, pp 79–122 | Cite as

Subellipticity of the\(\bar \partial\)-Neumann problem on pseudo-convex domains: Sufficient conditionsproblem on pseudo-convex domains: Sufficient conditions

  • J. J. Kohn
Article

Keywords

Holomorphic Function NEUMANN Problem Pseudodifferential Operator Regular Point Pseudoconvex Domain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Bedford, E. & Fornaess, J. E., A construction of peak functions on weakly pseudo-convex domains. Preprint.Google Scholar
  2. [2].
    Bloom, T. & Graham, I., A geometric characterization of points of typem on real hypersurfaces.J. Differential Geometry, to appear.Google Scholar
  3. [3].
    Boutet De Monvel, L. &Sjöstrand, J., Sur la singularité des noyaux de Bergman et de Szegö.Soc. Math. de France Astérisque, 34–35 (1976), 123–164.Google Scholar
  4. [4].
    Cartan, H., Variétés analytiques reélles et variétés analytiques complexes.Bull. Soc. Math. France, 85 (1957), 77–99.MATHMathSciNetGoogle Scholar
  5. [5].
    Catlin, D.,Boundary behaviour of holomorphic functions on weakly pseudo-convex domains. Thesis, Princeton Univ. 1978.Google Scholar
  6. [6].(a)
    D'Angelo, J., Finite type conditions for real hypersurfaces.J. Differential Geometry, to appear.Google Scholar
  7. [6].(b)
    D'Angelo, J., A note on the Bergman kernel.Duke Math. J., to appear.Google Scholar
  8. [7].
    Derridj, M., Sur la régularité des solutions du problème de Neumann pour\(\bar \partial\) dans quelques domains faiblement pseudo-convexes.J. Differential Geometry, to appear.Google Scholar
  9. [8].
    Derridj, M. &Tartakoff, D., On the global real-analyticity of solutions of the\(\bar \partial\)-Neumann problem.Comm. Partial Differential Equations, 1 (1976), 401–435.MATHMathSciNetGoogle Scholar
  10. [9].
    Diederich, K. &Fornaess, J. E., Pseudoconvex domains with real-analytic boundary.Ann. of Math., 107 (1978), 371–384.MATHMathSciNetCrossRefGoogle Scholar
  11. [10].
    Egorov, Yu. V., Subellipticity of the\(\bar \partial\)-Neumann problem.Dokl. Akad. Nauk. SSSR, 235, No. 5 (1977), 1009–1012.MATHMathSciNetGoogle Scholar
  12. [11].
    Ephraim, R.,C and analytic equivalence of singularities.Rice Univ. Studies, Complex Analysis, Vol. 59, No. 1 (1973), 11–31.MATHMathSciNetGoogle Scholar
  13. [12].
    Fefferman, C., The Bergman kernel and biholomorphic mappings.Invent. Math., 26 (1974), 1–65.MATHMathSciNetCrossRefGoogle Scholar
  14. [13].
    Folland, G. B. & Kohn, J. J.,The Neumann problem for the Cauchy-Riemann complex. Ann. of Math. Studies, No. 75, P.U. Press, 1972.Google Scholar
  15. [14].
    Greiner, P. C., On subelliptic estimates of the\(\bar \partial\)-Neumann problem inC 2.J. Differential Geometry, 9 (1974), 239–250.MATHMathSciNetGoogle Scholar
  16. [15].(a)
    Greiner, P. C. & Stein, E. M., On the solvability of some differential operators of type □b, preprint.Google Scholar
  17. [15].(b)
    Greiner, P. C. & Stein, E. M.,Estimates for the \(\bar \partial\) problem., Math. Notes No. 19, Princeton University Press 1977.Google Scholar
  18. [16].
    Henkin, G. M. &Čirka, E. M.,Boundary properties of holomorphic functions of several complex variables. Problems of Math. Vol. 4, Moscow 1975, 13–142.MATHGoogle Scholar
  19. [17].(a)
    Hörmander, L.,L 2 estimates and existence theorems for the\(\bar \partial\) operator.Acta Math., 113 (1965), 89–152.MATHMathSciNetCrossRefGoogle Scholar
  20. [17].(b)
    —, Hypoelliptic second order differential equations.Acta Math., 119 (1967), 147–171.MATHMathSciNetCrossRefGoogle Scholar
  21. [17].(c)
    —, Pseudo-differential operators and non-elliptic boundary problems.Ann. of Math., 83 (1966), 129–209.MATHMathSciNetCrossRefGoogle Scholar
  22. [18].
    Kashiwara, M., Analyse micro-locale du noyau de Bergman.Sem. Goulaouic-Schwartz 1976–1977. Exposé No VIII.Google Scholar
  23. [19].(a)
    Kerzman, N., The Bergman-kernel function: differentiability at the boundary.Math. Ann., 195 (1972), 149–158.MathSciNetCrossRefGoogle Scholar
  24. [19].(b)
    —, Hölder andL p estimates for solutions of\(\bar \partial u = f\) in strongly pseudo-convex domains.Comm. Pure Appl. Math., 24 (1971), 301–379.MATHMathSciNetGoogle Scholar
  25. [20].(a)
    Kohn, J. J., Lectures on degenerate elliptic problems.Proc. CIME Conf. on Pseudo-differential Operators, Bressanone (1977), to appear.Google Scholar
  26. [20].(b)
    —, Sufficient conditions for subellipticity on weakly pseudo-convex domains.Proc. Nat. Acad. Sci. U.S.A., 74 (1977), 2214–2216.MATHMathSciNetCrossRefGoogle Scholar
  27. [20].(c)
    —, Methods of partial differential equations in complex analysis.Proc. of Symp. in Pure Math., vol. 30, part 1 (1977), 215–237.MATHMathSciNetGoogle Scholar
  28. [20].(d)
    —, Global regularity for\(\bar \partial\) on weakly pseudo-convex manifolds.Trans. Amer. Math. Soc., 181 (1973), 273–292.MATHMathSciNetCrossRefGoogle Scholar
  29. [20].(e)
    —, Boundary behaviour of\(\bar \partial\) on weakly pseudo-convex manifolds of dimension two.J. Differential Geometry, 6 (1972), 523–542.MATHMathSciNetGoogle Scholar
  30. [21].(a)
    Kohn, J. J. &Nirenberg, L., A pseudo-convex domain not admitting a holomorphic support function.Math. Ann., 201 (1973), 265–268.MATHMathSciNetCrossRefGoogle Scholar
  31. [21].(b)
    —, Non-coercive boundary value problems.Comm. Pure Appl. Math., 18 (1965), 443–492.MATHMathSciNetGoogle Scholar
  32. [22].(a)
    Krantz, S. G., Characterizations of various domains of holomorphy via\(\bar \partial\) estimates and applications to a problem of Kohn, preprint.Google Scholar
  33. [22].(b)
    —, Optimal Lipschitz andL p regularity for the equation,\(\bar \partial u = f\) on strongly pseudo-convex domains.Math. Ann., 219 (1976), 223–260.MathSciNetCrossRefGoogle Scholar
  34. [23].
    Lieb, I., Ein Approximationssatz auf streng pseudo-konvexen GebietenMath. Ann., 184 (1969), 55–60.MathSciNetCrossRefGoogle Scholar
  35. [24].
    Lojasiewicz, S.,Ensembles semi-analytiques. Lecture note (1965) at I.H.E.S.; Reproduit no A66-765, Ecole polytechnique, Paris.Google Scholar
  36. [25].
    Narasimhan, R.,Introduction to the theory of analytic spaces Lectures notes in Math. No. 25, Springer Verlag 1966.Google Scholar
  37. [26].
    Range, R. M., On Hölder estimates for\(\bar \partial u = f\) on weakly pseudoconvex domains, preprint.Google Scholar
  38. [27].
    Rothschild, L. P. &Stein, E. M., Hypoelliptic differential operators and nilpotent groups.Acta Math., 137 (1976), 247–320.MathSciNetCrossRefGoogle Scholar
  39. [28].
    Tartakoff, D., The analytic hypoellipticity of □b and related operators on non-degenerate C-R manifolds, preprint.Google Scholar
  40. [29].
    Treves, F., Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and application to the\(\bar \partial\)-Neumann problem, preprint.Google Scholar
  41. [30].
    Spencer, D. C., Overdetermined systems of linear partial differential equations.Bull. Amer. Math. Soc., 75 (1969), 176–239.CrossRefMathSciNetGoogle Scholar
  42. [31].(a)
    Sweeney, W. J., TheD-Neumann problem.Acta Math., 120 (1968), 223–277.MATHMathSciNetCrossRefGoogle Scholar
  43. [31].(b)
    —, A condition for subellipticity in Spencer's Neumann problem.J. Differential Equations, 21 (1976), 316–362.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Almqvist & Wiksell 1979

Authors and Affiliations

  • J. J. Kohn
    • 1
  1. 1.Princeton UniversityPrincetonUSA

Personalised recommendations