Advertisement

Acta Mathematica

, Volume 117, Issue 1, pp 37–52 | Cite as

Necessary density conditions for sampling and interpolation of certain entire functions

  • H. J. Landau
Article

Keywords

Entire Function Counting Function Finite Union Finite Collection Single Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Duffin, R. J. &Shaeffer, A. C., A class of nonharmonic Fourier series.Trans. Amer. Math. Soc., 72 (1952), 341–366.MATHMathSciNetCrossRefGoogle Scholar
  2. [2].
    Landau, H. J., A sparse regular sequence of exponentials closed on large sets.Bull. Amer. Math. Soc., 70 (1964), 566–569.MATHMathSciNetCrossRefGoogle Scholar
  3. [3].
    — The eigenvalue behavior of certain convolution equations.Trans. Amer. Math. Soc., 115 (1965), 242–256.MATHMathSciNetCrossRefGoogle Scholar
  4. [4].
    Loomis, L. H.,An Introduction to abstract harmonic analysis, Van Nostrand, New York, 1953.MATHGoogle Scholar
  5. [5].
    Riesz, F. &Sz.-Nagy, B.,Functional analysis, Ungar, New York, 1955.MATHGoogle Scholar
  6. [6].
    Shapiro, H. S. &Shields, A. L., On some interpolation problems for analytic functions.Amer. J. Math., 83 (1961), 513–532.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1967

Authors and Affiliations

  • H. J. Landau
    • 1
  1. 1.Bell Telephone Laboratories, IncorporatedMurray HillUSA

Personalised recommendations