Acta Mathematica

, Volume 117, Issue 1, pp 37–52 | Cite as

Necessary density conditions for sampling and interpolation of certain entire functions

  • H. J. Landau
Article

Keywords

Entire Function Counting Function Finite Union Finite Collection Single Interval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Duffin, R. J. &Shaeffer, A. C., A class of nonharmonic Fourier series.Trans. Amer. Math. Soc., 72 (1952), 341–366.MATHMathSciNetCrossRefGoogle Scholar
  2. [2].
    Landau, H. J., A sparse regular sequence of exponentials closed on large sets.Bull. Amer. Math. Soc., 70 (1964), 566–569.MATHMathSciNetCrossRefGoogle Scholar
  3. [3].
    — The eigenvalue behavior of certain convolution equations.Trans. Amer. Math. Soc., 115 (1965), 242–256.MATHMathSciNetCrossRefGoogle Scholar
  4. [4].
    Loomis, L. H.,An Introduction to abstract harmonic analysis, Van Nostrand, New York, 1953.MATHGoogle Scholar
  5. [5].
    Riesz, F. &Sz.-Nagy, B.,Functional analysis, Ungar, New York, 1955.MATHGoogle Scholar
  6. [6].
    Shapiro, H. S. &Shields, A. L., On some interpolation problems for analytic functions.Amer. J. Math., 83 (1961), 513–532.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1967

Authors and Affiliations

  • H. J. Landau
    • 1
  1. 1.Bell Telephone Laboratories, IncorporatedMurray HillUSA

Personalised recommendations