Skip to main content
Log in

Hartree-Fock cluster investigation of location and hyperfine properties of normal muonium in silicon-trend with respect to diamond

  • Muonium in Semiconductors and Insulators
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Using the first-principles Hartree-Fock Cluster procedure employed earlier for normal muonium (Mu) in diamond, the total energy and hyperfine field at the muon site in silicon have been studied as a function of muon position along the <111> direction. The muon was found to be localized in the tetrahedral interstitial region, although the potential was significantly shallower as compared to diamond. The vibrationally averaged hyperfine constant for the muon shows a correct trend compared to diamond but is somewhat larger than experiment, possible reasons for which will be discussed. Results for the superhyperfine constants in silicon will be presented and compared with those for diamond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Holzschüh et al., Phys. Rev. A25 (1982) 1272, and references therein.

    Article  ADS  Google Scholar 

  2. R. F. Kiefl et al., Phys. Rev. B32 (1985) 530.

    Article  ADS  Google Scholar 

  3. J. S. Wang and C. Kittel, Phys. Rev. B7 (1973) 713.

    Article  ADS  Google Scholar 

  4. M. Manninen and P. F. Meier, Phys. Rev. B26 (1982) 6690.

    Article  ADS  Google Scholar 

  5. W. E. Pickett, M. L. Cohen and C. Kittel, Phys. Rev. B20 (1979) 5050; C. O. Rodriguez, M. Jaros and S. Brand, Solid State Comm. 31 (1979) 43.

    Article  ADS  Google Scholar 

  6. H. Katayama-Yoshida and K. Shindo, Phys. Rev. Lett. 51 (1983) 207.

    Article  ADS  Google Scholar 

  7. N. Sahoo et al., Phys. Rev. Lett. 50 (1983) 913; Hyperfine Interact. 17–19 (1984) 524.

    Article  ADS  Google Scholar 

  8. B. D. Patterson, in Muons and Pions in Materials Research, ed. J. Chappert and R. I. Grynszpan (North-Holland, Amsterdam, 1984), p. 161; S. F. J. Cox and M. C. R. Symons, (unpublished).

    Google Scholar 

  9. A. Mainwood and A. M. Stoneham, Physica B 116 (1983) 101; J. Phys. C17 (1984) 2513.

    Article  Google Scholar 

  10. S. Estreicher et al., Phys. Rev. Lett. 55 (1985) 1976.

    Article  ADS  Google Scholar 

  11. E. A. Coulbourn and J. Kendrick, in Computer Simulation of Solids, ed. C. R. A. Catlow and W. C. Makrodt (Springer-Verlag, New York, 1982) p. 67.

    Google Scholar 

  12. N. Sahoo, K. C. Mishra and T. P. Das, Phys. Rev. Lett. 55 (1985) 1506.

    Article  ADS  Google Scholar 

  13. B. N. Dev et al., Phys. Rev. B29 (1984) 1101; S. M. Mohapatra et al., J. Vac. Sci. Tech. A (in press).

    Article  ADS  Google Scholar 

  14. P. C. Kelires, K. C. Mishra and T. P. Das, Bull. Am. Phys. Soc. 31 (1986) 401.

    Google Scholar 

  15. M. Seel and P. S. Bagus, Phys. Rev. B8 (1983) 2023; A. D. Zdetsis and A. B. Kunz, Phys. Rev. B32 (1985) 6358.

    Article  ADS  Google Scholar 

  16. J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22 (1964) 571.

    Google Scholar 

  17. W. J. Hehre, R. F. Stewart and J. A. Pople, J. Chem. Phys. 51 (1969) 2657; W. J. Hehre et al., J. Chem. Phys. 52 (1970) 2769.

    Article  Google Scholar 

  18. W. J. Hehre et al., Ab initio Molecular Orbital Theory (John Wiley, New York, 1986) p. 79.

    Google Scholar 

  19. A. C. Kenton and W. H. Ribarsky, Phys. Rev. B23 (1981) 2897; G. G. DeLeo, G. D. Watkins and W. B. Fowler, Phys. Rev. B25 (1982) 4962.

    Article  ADS  Google Scholar 

  20. J. C. Phillips, Bonds and Bands in Semiconductors (Academic, New York, 1973) p. 42.

    Google Scholar 

  21. N. Sahoo, Ph. D. Thesis, State University of New York at Albany, 1986 (unpublished).

  22. G. G. DeLeo et al., (1982),Ref. 19.

    Google Scholar 

  23. J. C. Slater, Adv. Quant. Chem. 6 (1972) 1; K. H. Johnson, Adv. Quant. Chem. 7 (1973) 143.

    Article  Google Scholar 

  24. A. Redondo, W. A. Godaard III and T. C. McGill, J. Vac. Sci. Tech. 21 (1982) 649.

    Article  Google Scholar 

  25. V. A. Singh et al., Phys. Status Solidi, b81 (1977) 637; Phys. Lett. 65A (1978) 261.

    Google Scholar 

  26. J. W. Corbett et al., Phys. Lett. 93A (1983) 303.

    ADS  Google Scholar 

  27. N. M. Johnson, C. Herring and D. J. Chadi, Phys. Rev. Lett. 56 (1986) 769.

    Article  ADS  Google Scholar 

  28. C. O. Rodrigues et al., (1979),Ref., 5.

    Google Scholar 

  29. J. H. Brewer et al., Phys. Rev. Lett. 31 (1973) 143.

    Article  ADS  Google Scholar 

  30. The values of the magnetic moments for29Si and13C nuclei used, 0.7024 and −0.5553 nuclear magnetons respectively, are taken from Table E of C. H. Fuller and V. W. Cohen, Nuclear Data Tables 5, (1969) 433.

    Google Scholar 

  31. J. A. Brown et al., Phys. Rev. Lett. 43 (1979) 1751.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, N., Mishra, K.C. & Das, T.P. Hartree-Fock cluster investigation of location and hyperfine properties of normal muonium in silicon-trend with respect to diamond. Hyperfine Interact 32, 601–606 (1986). https://doi.org/10.1007/BF02394962

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02394962

Keywords

Navigation