Advertisement

Hyperfine Interactions

, Volume 38, Issue 1–4, pp 685–698 | Cite as

Experiments on clusters

  • Olof Echt
Laser Applications to Clusters/Trapped Atoms

Abstract

In this contribution we discuss four different types of experiments that have been conducted at molecular beams of neutral clusters. The size of particularly stable sodium chloride clusters and their corresponding geometrical structure is inferred from intensity anomalies in mass spectra. This information is obtained either for charged or for neutral clusters depending on whether the clusters are ionized by electron impact or by multiphoton absorption. The important role of fragmentation in mass spectrometry of xenon clusters is revealed by multiphoton ionization; dissociative reactions occurring on the time scale of 10−7 s with respect to the ionizing event can be analyzed. The solvation energy of negatively charged carbon dioxide clusters as a function of cluster size is obtained from electron attachment spectra. A resonance in the ion yield close to zero eV electron energy signifies that all clusters except for the monomer feature a positive electron affinity. An analysis of the kinetic energy of fragment ions, originating from delayed dissociation of triply charged carbon dioxide clusters, reveals that the size distribution of their fission fragments is extremely symmetric.

Keywords

Xenon Cluster Size Sodium Chloride Molecular Beam Electron Affinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O. Echt, M. Knapp, K. Sattler and E. Recknagel, Z. Phys. B53 (1983), 71.CrossRefGoogle Scholar
  2. [2]
    J. Gspann and K. Körting, J. Chem. Phys. 59 (1973) 4726.CrossRefGoogle Scholar
  3. [3]
    G.D. Stein, Surf. Sci. 156 (1985) 44; M. M. Kappes, R. W. Kunz and E. Schumacher, Chem. Phys. Lett. 91 (1982) 413.CrossRefGoogle Scholar
  4. [4]
    J. Mühlbach, P. Pfau, K. Sattler and E. Recknagel, Z. Phys. B47 (1982) 233.CrossRefGoogle Scholar
  5. [5]
    J. Diefenbach and T.P. Martin, J. Chem. Phys. 83 (1985) 2238.CrossRefADSGoogle Scholar
  6. [6]
    D.E. Powers, S.G. Hansen, M.E. Geusic, D.L. Michalopoulos and R.E. Smalley, J. Chem. Phys. 78 (1983) 2866.CrossRefADSGoogle Scholar
  7. [7]
    P. Fayet and L. Wöste, Surf. Sci. 156 (1985) 134.CrossRefGoogle Scholar
  8. [8]
    O. Echt, K. Sattler and E. Recknagel, Phys. Rev. Lett. 47 (1981) 1121.CrossRefADSGoogle Scholar
  9. [9]
    D. Kreisle, O. Echt, M. Knapp and E. Recknagel, Phys. Rev. A33 (1986) 768.CrossRefADSGoogle Scholar
  10. [10]
    Q.L. Zhang, S.C. O’Brien, J.R. Heath, Y. Liu, R.F. Curl, H.W. Kroto and R.E. Smalley, J. Phys. Chem. 90 (1986) 525.CrossRefGoogle Scholar
  11. [11]
    R. Pflaum, P. Pfau, K. Sattler and E. Recknagel, Surf. Sci. 156 (1985) 165CrossRefGoogle Scholar
  12. [12]
    T.P. Martin,Festkörperprobleme (Advances in Solid State Physics) Vol. 24, Ed. P. Gross (Vieweg, Braunschweig, 1984) p. 1.Google Scholar
  13. [13]
    H. Haberland, Surf. Sci. 156 (1985) 303.CrossRefGoogle Scholar
  14. [14]
    T.M. Barlak, J.R. Wyatt, J.R. Colton, J.J. DeCorpo and J.E. Campana, J. Am. Chem. Soc. 104 (1982) 1212.CrossRefGoogle Scholar
  15. [15]
    W. Ens, R.M. Beavis and K.G. Standing, Phys. Rev. Lett 50 (1983) 27.CrossRefADSGoogle Scholar
  16. [16]
    R. Pflaum, Ph.D. Thesis, Universität Konstanz 1986. R. Pflaum, K. Sattler and E. Recknagel, submitted to Chem. Phys. Lett.Google Scholar
  17. [17]
    U. Buck and H. Meyer, J. Chem. Phys. 84 (1986) 4854.CrossRefADSGoogle Scholar
  18. [18]
    O. Echt, D. Kreisle, M. Knapp and E. Recknagel, Chem. Phys. Lett. 108 (1984) 401.CrossRefADSGoogle Scholar
  19. [19]
    O. Echt, M.C. Cook and A.W. Castleman, Jr., Chem. Phys. Lett. 135 (1987) 229.CrossRefADSGoogle Scholar
  20. [20]
    H. Haberland, Surf. Sci. 156 (1985) 305; H.-U. Böhmer and S.D. Peyerimhoff, Z. Phys. D4 (1986) 195.CrossRefGoogle Scholar
  21. [21]
    T.D. Märk and P. Scheier, submitted for publication.Google Scholar
  22. [22]
    T.D. Märk, K. Leiter, W. Ritter and A. Stamatovic, Phys. Rev. Lett. 55 (1985) 2559; T.D. Märk, K. Leiter, W. Ritter and A. Stamatovic, Int. J. Mass Spectrum. & Ion Proc. 74 (1986) 265.CrossRefADSGoogle Scholar
  23. [23]
    A. Stamatovic, K. Leiter, W. Ritter, K. Stephan and T.D. Märk, J. Chem. Phys. 83 (1985) 2942.CrossRefADSGoogle Scholar
  24. [24]
    M. Knapp, O. Echt, D. Kreisle and E. Recknagel, J. Chem. Phys. 85 (1986) 636; M. Knapp, O. Echt, D. Kreisle and E. Recknagel, J. Phys. Chem. 91 (1987) 2601.CrossRefADSGoogle Scholar
  25. [25]
    C.E. Klots and R.N. Compton, J. Chem. Phys. 69 (1978) 1636.CrossRefADSGoogle Scholar
  26. [26]
    A. Stamatovic, K. Stephan and T.D. Märk, Int. J. Mass Spectrom. & Ion Proc. 63 (1985) 37.CrossRefGoogle Scholar
  27. [27]
    M. Knapp, O. Echt, D. Kreisle, T.D. Märk and E. Recknagel, Chem. Phys. Lett. 126 (1986) 225.CrossRefADSGoogle Scholar
  28. [28]
    M. Knapp, Ph.D. Thesis, Universität Konstanz, 1986.Google Scholar
  29. [29]
    R.N. Compton, P.W. Reinhardt and C.D. Cooper, J. Chem. Phys. 63 (1975) 3821.CrossRefADSGoogle Scholar
  30. [30]
    W.B. England, Chem. Phys. Lett. 78 (1981) 607.CrossRefADSGoogle Scholar
  31. [31]
    Y. Yoshioka and K.D. Jordan, J. Am. Chem. Soc. 102 (1980) 2621.CrossRefGoogle Scholar
  32. [32]
    J.V. Coe, J.T. Snodgrass, K.M. McHugh, C.B. Freidhoff and K.H. Bowen, submitted J. Phys. Chem.Google Scholar
  33. [33]
    P.R. Antoniewicz, G.T. Bennett and J.C. Thompson, J. Chem. Phys. 77 (1982) 4573.CrossRefADSGoogle Scholar
  34. [34]
    M.W. Cole, Rev. Mod. Phys. 46 (1974) 451.CrossRefADSGoogle Scholar
  35. [35]
    K. Sattler, J. Mühlbach, O. Echt, P. Pfau and E. Recknagel, Phys. Rev. Lett. 42 (1981) 160; O. Echt, K. Sattler and E. Recknagel, Phys. Lett. 90A (1982) 185.CrossRefADSGoogle Scholar
  36. [36]
    O. Echt, in:Physics and chemistry of Small Clusters, NATO ASI Series, Eds. P. Jena, B.K. Rao and S.N. Khanna, in print.Google Scholar
  37. [37]
    T. Leisner, Diploma Thesis, University of Konstanz, 1986.Google Scholar
  38. [38]
    P. Scheier and T.D. Märk, submitted for publication.Google Scholar
  39. [39]
    D. Kreisle, K. Leiter, O. Echt and T.D. Märk, Z. Phys. D3 (1986) 319; K. Leiter, D. Kreisle, O. Echt and T.D. Märk, J. Phys. Chem. 91 (1987) 2583.CrossRefGoogle Scholar
  40. [40]
    D. Kreisle, O. Echt, M. Knapp, E. Recknagel, K. Leiter, T.D. Märk, J.J. Sáenz and J.M. Soler, Phys. Rev. Lett. 56 (1986) 1551.CrossRefADSGoogle Scholar
  41. [41]
    J.G. Gay and B.J. Berne, Phys. Rev. Lett. 49 (1982) 194.CrossRefADSGoogle Scholar
  42. [42]
    D. Kreisle, Ph.D. Thesis, Universität Konstanz, 1986.Google Scholar
  43. [43]
    R. Casero, J.J. Sáenz and J.M. Soler, unpublished results.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1987

Authors and Affiliations

  • Olof Echt
    • 1
  1. 1.Fakultät für PhysikUniversität KonstanzKonstanzW. Germany

Personalised recommendations