Theoretica chimica acta

, Volume 61, Issue 6, pp 581–586 | Cite as

Extended connectivity in chemical graphs

  • M. Razinger
Original Investigations

Abstract

The true nature of the extended connectivity, used in Morgan algorithm for the canonical numerotation of points in chemical graphs, is discussed. An alternative method for its calculation based on the number of walks is described and shown to yield results identical to Morgan's method.

Key words

Graph theory Extended connectivity Morgan algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morgan, H. L.: J. Chem. Doc.5, 107 (1965)CrossRefGoogle Scholar
  2. 2.
    Wipke, W. T., Dyott, T. M.: J. Am. Chem. Soc.96, 4834 (1974)Google Scholar
  3. 3.
    Moreau, G.: Nouv. J. Chim.4, 17 (1980)Google Scholar
  4. 4.
    Harary, F.: Graph Theory, Reading, Mass: Addison-Wesley, 1969Google Scholar
  5. 5.
    Golender, V. E., Drboglav, V. V., Rosenblit, A. B.: J. Chem. Inf. Comput. Sci.21, 196 (1981)CrossRefGoogle Scholar
  6. 6.
    Razinger, M., Chrétien, J., Dubois, J. E.: J. Chim. Phys. (submitted)Google Scholar
  7. 7.
    Deo, N.: Graph theory with applications to engineering and computer science, Englewood Cliffs, N.J.: Prentice-Hall, 1974Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Razinger
    • 1
  1. 1.Boris Kidrič Institute of ChemistryLjubljanaYugoslavia

Personalised recommendations