Skip to main content
Log in

On the quantum chemical origin for the nonvalidity of Koopmans' theorem in transitionmetal compounds

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The quantum chemical origin for the nonvalidity of Koopmans' theorem in transitionmetal compounds of the 3d series is analyzed by means of the Green's function formalism applied in the framework of a semiempirical INDO Hamiltonian. In the case of ferrocene (1), cyclobutadiene iron tricarbonyl (2) and irontetracarbonyl dihydride (3) the self-energy part of a geometric approximation has been partitioned into relaxation and correlation (pair removal, pair relaxation) increments. The breakdown of Koopmans' theorem for strongly localized MOs with large Fe 3d amplitudes is predominantly the result of electronic relaxation lowering the calculated ionization potentials. On the other hand the variation of the pair correlation energy in the cationic hole-state is by no means negligible and acts into the opposite direction as the relaxation increment. These significant pair relaxation contributions explain the wellknown failtures of the ΔSCF approach in combination with large scaleab initio bases. The loss of ground state pair correlation in the outer valence region is small in comparison to relaxation and pair relaxation. The magnitude of the aforementioned reorganization increments has been studied as a function of the localization properties of the MOs and as a function of the one-electron energies of the available particle- and hole-states. The computational findings derived with the INDO model are compared with recentab initio studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cauletti, C., Furlani, I.: Struct. Bonding35, 119 (1980); Green, J. C.: Struct. Bonding43, 37 (1981); Veillard A., Demuynck, J.: In: Modern theoretical chemistry, Schaefer, H. F. (ed). New York: Plenum Press 1977

    Google Scholar 

  2. Ferreira, R.: Struct. Bonding31, 1 (1976)

    CAS  Google Scholar 

  3. Koopmans, T.: Physica1, 104 (1933)

    CAS  Google Scholar 

  4. Freund, H. J., Plummer, E. W.: Phys. Rev.B23, 4859 (1981)

    Google Scholar 

  5. Bagus, P. S.: Phys. Rev. Sect. A139, 619 (1965); Moser, C. M., Nesbet, R. K., Verhaegen, G.: Chem. Phys. Letters12, 230 (1971)

    CAS  Google Scholar 

  6. Coutiére, M.-M., Demuynck, J., Veillard, A.: Theoret. Chim. Acta (Berl.)27, 281 (1972)

    Google Scholar 

  7. Bagus, P. S., Wahlgren, U. I., Almlöf, J.: J. Chem. Phys.64, 2324 (1976)

    Article  CAS  Google Scholar 

  8. Rohmer, M.-M., Veillard, A.: J. C. S. Chem. Commun. 250 (1973)

  9. Rohmer, M.-M., Demuynck, J., Veillard, A.: Theoret. Chim. Acta (Berl.)36, 93 (1974).

    Article  CAS  Google Scholar 

  10. Van der Velde, G. A., Nieuwpoort, W. C.: cited in [9]

    Google Scholar 

  11. Doran, M., Hillier, I. H., Seddon, E. A., Seddon, K. R., Thomas, V. H., Guest, M. F.: Chem. Phys. Letters63, 612 (1979)

    CAS  Google Scholar 

  12. v. Niessen, W., Cederbaum, L. S.: Mol. Phys.43, 897 (1981)

    Google Scholar 

  13. Saddai, D., Freund, H. J., Hohlneicher, G.: Surface Sci.95, 527 (1981); Saddai, D., Freund, H. J., Hohlneicher, G.: Chem. Phys.55, 339 (1981)

    Google Scholar 

  14. Böhm, M. C., Gleiter, R.: Theoret. Chim. Acta (Berl.)57, 315 (1980)

    Article  Google Scholar 

  15. Böhm, M. C., Gleiter, R.: Chem. Phys.64, 183 (1982); Böhm, M. C., Eckert-Maksić, M., Ernst, R. D., Wilson, D. R., Gleiter, R.: J. Am. Chem. Soc.104, 2699 (1982)

    Article  Google Scholar 

  16. Böhm, M. C., Gleiter, R.: J. Comput. Chem.3, 140 (1982); Böhm, M. C.: Z. Naturforsch. 36a, 1361 (1981); Böhm, M. C.: Z. Physik. Chem.129, 149 (1982)

    Article  Google Scholar 

  17. Freund, H. J., Hohlneicher, G.: Theoret. Chim. Acta (Berl.)51, 145 (1979)

    Article  CAS  Google Scholar 

  18. Böhm, M. C., Gleiter, R.: Theoret. Chim. Acta (Berl.)59, 127, 153 (1981)

    Google Scholar 

  19. Böhm, M. C.: Chem. Phys.67, 255 (1982)

    Google Scholar 

  20. Born, G., Kurtz, H. A., Öhrn, Y.: J. Chem. Phys.68, 74 (1978)

    Article  CAS  Google Scholar 

  21. Reitz, H., Kutzelnigg, W.: Chem. Phys. Letters66, 111 (1979)

    CAS  Google Scholar 

  22. Ecker, F., Hohlneicher, G.: Theoret. Chim. Acta (Berl.)25, 289 (1972); Hohlneicher, G., Ecker, F., Cederbaum, L. S.: In: Electron spectroscopy, Shirley, D. E. (ed). Amsterdam: North Holland Publ. Comp. 1972

    Article  CAS  Google Scholar 

  23. Nerbrant, P. O.: Int. J. Quantum Chem.9, 901 (1975)

    Article  CAS  Google Scholar 

  24. Cederbaum, L. S., Domcke, W.: Advan. Chem. Phys.36, 205 (1977); v. Niessen, W., Cederbaum, L. S., Domcke, W., Schirmer, J.: in Computational methods in chemistry, Bargon, J. (ed). New York: Plenum Press 1980

    CAS  Google Scholar 

  25. Dyson, F. J.: Phys. Rev.75, 486 (1949)

    Google Scholar 

  26. Cederbaum, L. S.: Theoret. Chim. Acta (Berl.)31, 239 (1973); Cederbaum, L. S.: J. Phys. B8, 290 (1975)

    Article  CAS  Google Scholar 

  27. Kelly, H. P.: Phys. Rev.131, 684 (1963)

    Article  Google Scholar 

  28. Pickup, B. T., Goscinski, O.: Mol. Phys.26, 1013 (1973)

    CAS  Google Scholar 

  29. Sinanoğlu, O.: J. Chem. Phys.36, 706 (1962); Sinanoğlu, O.: Advan. Chem. Phys.14, 237 (1969)

    Google Scholar 

  30. Böhm, M. C.: Inorg. Chem. (in press)

  31. Böhm, M. C.: Ber. Bunsenges. Phys. Chem.86, 56 (1982); Böhm, M. C.: Int. J. Quantum Chem. (in press)

    Google Scholar 

  32. Čižek, J.: J. Chem. Phys.45, 4256 (1966); Čižek, J., Paldus, J., Hubac, I.: Int. J. Quantum Chem.8, 951 (1974); Paldus, J.: Int. J. Quantum Chem. Symp.8, 293 (1974); Saute, M., Paldus, J., Čižek, J.: Int. J. Quantum Chem.15, 463 (1979)

    Google Scholar 

  33. Koutecky, J.: J. Chem. Phys.47, 1501 (1967); Koutecky, J., Čižek, J., Dubsky, J., Hlavaty, K.: Theoret. Chim. Acta (Berl.)2, 462 (1964); Koutecky, J., Čižek, J., Dubsky, J., Hlavaty, J.: Theoret. Chim. Acta (Berl.)3, 341 (1965)

    CAS  Google Scholar 

  34. Schulten, K., Ohmine, I., Karplus, M.: J. Chem. Phys.64, 4422 (1976); Ohmine, I., Karplus, M., Schulten, K.: J. Chem. Phys.68, 2298 (1978)

    CAS  Google Scholar 

  35. Evans, S., Orchard, A. F., Turner, D. W.: Int. J. Mass Spectrom. Ion Phys.7, 261 (1971); Evans, S., Green, M. L. H., Jewitt, B., Orchard, A. F., Pygall, C. F.: J. C. S. Faraday II68, 1847 (1972)

    Article  CAS  Google Scholar 

  36. Rabalais, J. W., Werme, L. O., Bergmark, T., Karlson, L., Hussain, M., Siegbahn, K.: J. Chem. Phys.57, 1185 (1972)

    CAS  Google Scholar 

  37. Böhm, M. C., Gleiter, R., Delgado-Pena, F., Cowan, D. O.: Inorg. Chem.19, 1081 (1980); Böhm, M. C., Gleiter, R., Delgado-Pena, F., Cowan, D. O.: J. Chem. Phys. (submitted for publication)

    Google Scholar 

  38. Bohn, R. K., Haaland, A.: J. Organomet. Chem.5, 470 (1966)

    Article  CAS  Google Scholar 

  39. Davis, M. I., Speed, C. S.: J. Organomet. Chem.21, 401 (1970)

    Article  CAS  Google Scholar 

  40. McNeill, E. A., Scholer, F. R.: J. Am. Chem. Soc.99, 6243 (1977)

    Article  CAS  Google Scholar 

  41. Albright, T. A., Hofmann, P., Hoffmann, R.: J. Am. Chem. Soc.99, 7546 (1977); Hoffmann, R., Albright, T. A., Thorn, D. L.: Pure Appl. Chem.50, 1 (1978)

    CAS  Google Scholar 

  42. Goscinski, O., Pickup, B. T., Purvis, G.: Chem. Phys. Letters22, 167 (1973); Goscinski, O., Hehenberger, M., Roos, B., Siegbahn, P.: Chem. Phys. Letters33, 427 (1975); Hehenberger, M.: Chem. Phys. Letters46, 117 (1977); Firsht, D., Pickup, B. T.: Chem. Phys. Letters56, 295 (1977)

    CAS  Google Scholar 

  43. Böhm, M. C., Gleiter, R., Batich, C. D.: Helv. Chim. Acta63, 990 (1980); Böhm, M. C., Gleiter, R.: Z. Naturforsch.35b, 1028 (1980); Böhm, M. C., Daub, J., Gleiter, R., Hofmann, P., Lappert, M. F., Öfele, K.: Chem. Ber.113, 3629 (1980); Böhm, M. C., Gleiter, R.: Chem. Ber.113, 3647 (1980); Böhm, M. C., Gleiter, R.: J. Comput. Chem.1, 407 (1980); Böhm, M. C., Sen, K. D., Schmidt, P. C.: Chem. Phys. Letters78, 357 (1981); Böhm, M. C., Schmidt, P. C., Sen, K. D.: J. Molec. Struct. (Theochem)87, 43 (1982)

    Article  Google Scholar 

  44. Böhm, M. C.: J. Molec. Struct. (Theochem) (in press)

  45. Böhm, M. C.: Inorg. Chim. Acta62, 171 (1982)

    Article  Google Scholar 

  46. v. Niessen, W., Kraemer, W. P., Cederbaum, L. S.: J. Electron Spectrosc.8, 179 (1976); v. Niessen, W., Cederbaum, L. S., Kraemer, W. P., Diercksen, G. H. F.: J. Chem. Phys.65, 1378 (1976); v. Niessen, W., Cederbaum, L. S., Diercksen, G. H. F.: J. Chem. Phys.67, 4124 (1977); v. Niessen, W., Diercksen, G. H. F.: J. Electron Spectrosc.16, 351 (1979)

    Google Scholar 

  47. Thouless, D. J.: The quantum mechanics of many-body systems New York: Academic Press 1961; Mattuck, R. D.: Feynman diagrams in the many-body problem London: McGraw Hill 1967; Economou, E. N.: Green's functions in quantum physics. Berlin, Heidelberg, New York: Springer 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, M.C. On the quantum chemical origin for the nonvalidity of Koopmans' theorem in transitionmetal compounds. Theoret. Chim. Acta 61, 539–558 (1982). https://doi.org/10.1007/BF02394732

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02394732

Key words

Navigation