Theoretica chimica acta

, Volume 60, Issue 3, pp 203–226 | Cite as

Cyclic conjugation and the hückel molecular orbital model

  • I. Gutman
  • O. E. Polansky
Original Investigations

Abstract

A new graphic polynomial, μ (G, t), has been introduced which depends on a vectort and which reduces to the characteristic and matching polynomial of the graphG for certain choices oft. This leads to a unification of a great part of the previously developed theories of the characteristic and matching polynomials. The basic properties of μ (G, t) are determined.

A method has been developed by which a functionJ (t) can be associated with every π-electron indexJ. Since the componentt a of the vectort is interpreted as the extent by which a particular cycleZa of the molecular graphG influences the polynomial μ(G, t), it is possible to use the functionJ(t) in the study of the effect ofZa on the π-electron indexJ.

Total π-electron energy, π-electron charge and π-electron bond order have been analysed by this method and a number of topological rules of the modulo 4 type have been formulated. It is indicated that all these rules have a common algebraic background.

Key words

Graph theory Hückel rule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.(a)
    For details of the Hückel theory, especially for early work in this field see: Hückel, E.: Grundzüge der Theorie ungesättigter und aromatischer Verbindungen. Berlin: Verlag Chemie 1940;Google Scholar
  2. 1.(b)
    For details of the Hückel theory, especially for early work in this field see: Coulson, C. A., O'Leary, B., Mallion, R. B.: Hückel theory for organic chemists. London: Academic Press 1978Google Scholar
  3. 2.
    See for example: Effenberger, F., Fischer, P., Schoeller, W. W., Stohrer, W.-D.: Tetrahedron34, 2409 (1978); Bräuchle, C., Kabza, H., Voitländer, J.: Chem. Phys.48, 369 (1980)CrossRefGoogle Scholar
  4. 3.
    See for example: Kollmar, H.: J. Am. Chem. Soc.101, 4832 (1979); Basilevsky, M. V., Weinberg, N. N.: Int. J. Quantum Chem.17, 399 (1980)CrossRefGoogle Scholar
  5. 4.
    Woodward, R. B., Hoffmann, R.: The conservation of orbital symmetry. Weinheim: Verlag Chemie 1970Google Scholar
  6. 5.
    Dewar, M. J. S., Dougherty, R. C.: The PMO theory of organic chemistry. New York: Plenum Press 1975Google Scholar
  7. 6.
    For examples where the HMO results are in essential disagreement with observed facts see: Michl, J., Thulstrup, E. W.: Tetrahedron32, 205 (1976); Heilbronner, E., Jones, T. B.: J. Am. Chem. Soc.100, 6506 (1978); Gutman, I.: Theoret. Chim. Acta (Berl.)56, 89 (1980); see also [1b] pp. 134–137CrossRefGoogle Scholar
  8. 7.
    Graovac, A., Gutman, I., Trinajstić, N.: Topological approach to the chemistry of conjugated molecules. Berlin: Springer-Verlag 1977; see also [1b]Google Scholar
  9. 8.
    Cvetković, D., Doob, M., Sachs, H.: Spectra of graphs — theory and application. New York: Academic Press 1980Google Scholar
  10. 9.
    Gutman, I.: Match (Mülheim)6, 75 (1979) and references cited thereinGoogle Scholar
  11. 10.
    Gutman, L., Hosoya, H.: Theoret. Chim. Acta (Berl.)48, 279 (1978)Google Scholar
  12. 11.
    Heilmann, O. J., Lieb, E. H.: Commun. Math. Phys.25, 190 (1972)CrossRefGoogle Scholar
  13. 12.
    Farrell, E. J.: J. Comb. Theory27B, 75 (1979)Google Scholar
  14. 13.
    Godsil, C. D., Gutman, I.: J. Graph Theory, in pressGoogle Scholar
  15. 14.
    Gutman, I.: unpublished workGoogle Scholar
  16. 15.
    Gutman, I.: Chem. Phys. Letters66, 595 (1979)Google Scholar
  17. 16.
    Gutman, I.: Z. Naturforsch.35a, 458 (1980)Google Scholar
  18. 17.
    Graovac, A., Gutman, I., Trinajstić, N., Zivković, T.: Theoret. Chim. Acta (Berl.)26, 67 (1972)CrossRefGoogle Scholar
  19. 18.
    Farrell, E. J.: J. Comb. Theory26B, 111 (1979)Google Scholar
  20. 19.
    Gutman, I.: Z. Naturforsch.33a, 214 (1978) and references thereinGoogle Scholar
  21. 20.
    Gutman, I.: J. Chem. Soc. Faraday II75, 799 (1979)Google Scholar
  22. 21.
    Gutman, I., Trinajstić, N.: Chem. Phys. Letters20, 257 (1973); J. Chem. Phys.64, 4921 (1976); Canad. J. Chem.54, 1789 (1976); Hosoya, H., Hosoi, K., Gutman, I.: Theoret. Chim. Acta (Berl.)38, 37 (1975); Gutman, I.: Chem. Phys. Letters46, 169 (1977); Z. Naturforsch.32a, 1072 (1977)Google Scholar
  23. 22.
    Gutman, I., Trinajstić, N., Zivković, T.: Tetrahedron29, 3449 (1973)CrossRefGoogle Scholar
  24. 23.
    Gutman, I., Trinajstić, N.: Croat. Chem. Acta48, 19 (1976); Gutman, I., Yamaguchi, T., Hosoya, H.: Bull. Chem. Soc. Japan49, 1811 (1976)Google Scholar
  25. 24.
    Gutman, I.: Z. Naturforsch.32a, 765 (1977); Gutman, I., Bosanac, S., Trinajstić, N.: Croat. Chem. Acta51, 293 (1978)Google Scholar
  26. 25.
    Gutman, I., Knop, J. V., Trinajstić, N.: Z. Naturforsch.29b, 80 (1974)Google Scholar
  27. 26.
    Heilbronner, E.: Tetrahedron Letters, 1923 (1964)Google Scholar
  28. 27.
    Goldstein, M. J., Huffman, R.: J. Am. Chem. Soc.93, 6193 (1971); Herndon, W. C.: J. Am. Chem. Soc.95, 2404 (1973);96, 7605 (1974); Kruszewski, J., Krygowski, T. M.: Canad. J. hem.53, 945 (1975); Day, A. C: J. Am. Chem. Soc.97, 2431 (1975); Randić, M.: J. Am. Chem. Soc.99, 444 (1977); Tetrahedron33, 1905 (1977); Inagaki, S., Hirabayashi, Y.: J. Am. Chem. Soc.99, 7418 (1977); Plath, P. J.: Match (Mülheim)7, 229 (1979)Google Scholar
  29. 28.
    Coulson, C. A., Longuet-Higgins, H. C.: Proc. Roy. Soc. (London)A191, 39 (1947)Google Scholar
  30. 29.
    Coulson, C. A.: J. Chem. Soc., 3111 (1954)Google Scholar
  31. 30.
    Gutman, I.: Theoret. Chim. Acta (Berl.)50, 287 (1979)CrossRefGoogle Scholar
  32. 31.
    Aihara, J.: J. Am. Chem. Soc.98, 2750 (1976); Gutman, I., Milun, M., Trinajstić, N.: J. Am. Chem. Soc.99, 1692 (1977)Google Scholar
  33. 32.
    Gutman, I.: Bull. Soc. Chim. Beograd44, 173 (1979)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • I. Gutman
    • 1
  • O. E. Polansky
    • 1
  1. 1.Max-Planck-Institut für StrahlenchemieMülheim a.d. RuhrGermany

Personalised recommendations